PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2858.
Published online 2010 October 20. doi:  10.1107/S1600536810040717
PMCID: PMC3009249

3,3-Dichloro-1-(chloro­meth­yl)indolin-2-one

Abstract

In the title compound, C9H6Cl3NO, the pyrrole ring is almost coplanar with the benzene ring [dihedral angle = 1.90 (9)°], while the Cl—C—N—C torsion angle is 98.78 (17)°. In the crystal, pairs of mol­ecules are inter­connected by pairs of Cl(...)Cl inter­actions [3.564 (5) Å], forming dimers, which are further peripherally connected through inter­molecular C—H(...)O=C and π–π inter­actions [centroid–centroid distances = 4.134 (7), 4.134 (6) and 4.238 (7) Å], forming a two-dimensional network.

Related literature

For the synthesis of the title compound, see: Höhme & Schwartz, (1974 [triangle]). For the synthesis of 1-(chloro­meth­yl) indoline-2,3-dione, see: Höhme & Schwartz, (1973 [triangle]). For Cl(...)Cl inter­actions, see: Reddy et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2858-scheme1.jpg

Experimental

Crystal data

  • C9H6Cl3NO
  • M r = 250.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2858-efi3.jpg
  • a = 8.6102 (1) Å
  • b = 14.5573 (2) Å
  • c = 8.2461 (1) Å
  • β = 93.381 (1)°
  • V = 1031.78 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 296 K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • 13146 measured reflections
  • 2450 independent reflections
  • 2156 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.094
  • S = 1.06
  • 2450 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040717/kj2158sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040717/kj2158Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education (project No. KM200710028008).

supplementary crystallographic information

Comment

Höhme and Schwartz reported that the reaction of 1-(hydroxymethyl) indoline-2,3-dione with SOCl2 gave 1-(chloromethyl) indoline-2,3-dione (Höhme & Schwartz, 1973), whereas the reaction in the presence of a small amount of pyridine gave the title compound (Höhme & Schwartz, 1974). However, our experimental results showed that the title compound could also be obtained from the reaction in the absence of pyridine. Here, we report the structure of the title compound.

X-ray crystal analysis shows that the pyrrole ring almost lies within the plane of the benzene ring, while the torsion angle Cl2—C9—N1—C8 equals 98.78 (17)°, as shown in Fig.1. Two molecules arrange in a face to face mode and thus interconnect through intermolecular Cl1···Cl2(-x + 1, -y + 1, -z + 2) interactions (Cl···Cl=3.564 (5) Å) (Reddy et al., 2006), forming a dimer. Each dimeric unit peripherically links to four neihgbouring ones through intermolecular C4—H4···O1=C8 interactions (Table 1), generating a two-dimensional network. π–π interactions (Table 2) between the approximate parallel benzene and/or parrole rings cooperate with those weak interactions to consolidate the supramolecular structure, as shown in Fig. 2.

Experimental

A mixture of indoline-2,3-dione (3.0 g, 0.02 mol) and formalin (5 ml) in 30 ml of water was refluxed for 1 h. After that, the reaction mixture was stirred at room temperature overnight. The resulting precipitate, 1-(hydroxymethyl)indoline-2,3-dione, was separated by filtration and purified by recrystallization from ethanol, which was heated with SOCl2 (25 ml) under reflux for 3.5 h. The reaction mixture was distilled in vacuum to remove excess SOCl2 and the residue was purified by column chromatography on silica gel using dichloromethane/methanol=98:2, v/v, as an eluent (Rf=0.33, dichloromethane/methanol=98:2, v/v; m.p. 141–143°C; yield 50.5% in two steps). The light yellow crystals of the title compound were obtained by slow evaporation from the solution of dichloromethane methanol 98:2 (v/v) at room temperature.

Refinement

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H=0.93 Å for aryl H atoms and Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.
The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 50% probability level.
Fig. 2.
Cl···Cl and C-H···O=C interactions in the crystalline structure of the title compound. The blue dashed lines indicate Cl···Cl interaction, while the red dashed lines represent C—H···O=C ...

Crystal data

C9H6Cl3NOF(000) = 504
Mr = 250.50Dx = 1.613 Mg m3Dm = 1.613 Mg m3Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6102 (1) ÅCell parameters from 7007 reflections
b = 14.5573 (2) Åθ = 2.5–27.8°
c = 8.2461 (1) ŵ = 0.85 mm1
β = 93.381 (1)°T = 296 K
V = 1031.78 (2) Å3Block, yellow
Z = 40.16 × 0.12 × 0.10 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 27.9°, θmin = 2.4°
phi and ω scansh = −11→11
13146 measured reflectionsk = −19→19
2450 independent reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0433P)2 + 0.4377P] where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C90.4139 (2)0.66723 (13)0.5958 (2)0.0448 (4)
H9A0.37470.61710.52750.054*
H9B0.44040.71760.52550.054*
Cl10.72991 (7)0.48322 (4)0.99637 (6)0.06304 (17)
Cl30.87749 (7)0.48989 (4)0.69017 (7)0.06607 (17)
Cl20.26419 (5)0.70402 (4)0.72483 (7)0.06448 (17)
C10.9042 (2)0.68812 (13)0.9240 (2)0.0478 (4)
H10.98380.65410.97620.057*
C20.9062 (2)0.78348 (14)0.9279 (3)0.0533 (4)
H20.98820.81380.98360.064*
C30.7883 (2)0.83366 (12)0.8503 (2)0.0497 (4)
H30.79220.89750.85450.060*
C40.66346 (19)0.79124 (11)0.7659 (2)0.0415 (4)
H40.58370.82520.71390.050*
C50.66323 (17)0.69655 (10)0.76292 (19)0.0345 (3)
C60.78112 (18)0.64512 (11)0.84075 (19)0.0373 (3)
C70.74369 (19)0.54609 (11)0.8146 (2)0.0410 (3)
C80.58313 (19)0.54734 (11)0.7189 (2)0.0402 (3)
N10.54994 (15)0.63781 (9)0.68728 (17)0.0385 (3)
O10.50408 (18)0.48209 (9)0.68047 (17)0.0562 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C90.0434 (8)0.0522 (9)0.0379 (8)0.0048 (7)−0.0044 (7)−0.0021 (7)
Cl10.0768 (3)0.0574 (3)0.0547 (3)0.0061 (2)0.0024 (2)0.0214 (2)
Cl30.0658 (3)0.0575 (3)0.0769 (4)0.0237 (2)0.0207 (3)−0.0084 (2)
Cl20.0411 (2)0.0907 (4)0.0615 (3)0.0133 (2)0.0021 (2)−0.0031 (3)
C10.0344 (8)0.0575 (10)0.0512 (10)0.0034 (7)−0.0008 (7)0.0031 (8)
C20.0421 (9)0.0578 (11)0.0595 (11)−0.0122 (8)−0.0006 (8)−0.0053 (9)
C30.0509 (10)0.0381 (8)0.0609 (11)−0.0072 (7)0.0093 (8)−0.0033 (8)
C40.0415 (8)0.0350 (7)0.0482 (9)0.0034 (6)0.0053 (7)0.0020 (6)
C50.0332 (7)0.0345 (7)0.0361 (7)0.0023 (5)0.0045 (6)−0.0008 (6)
C60.0358 (7)0.0380 (8)0.0386 (8)0.0064 (6)0.0062 (6)0.0018 (6)
C70.0452 (8)0.0369 (8)0.0416 (8)0.0106 (6)0.0072 (7)0.0039 (6)
C80.0473 (8)0.0355 (7)0.0383 (8)0.0015 (6)0.0075 (7)−0.0014 (6)
N10.0379 (6)0.0344 (6)0.0428 (7)0.0032 (5)−0.0013 (5)−0.0021 (5)
O10.0701 (9)0.0399 (6)0.0583 (8)−0.0114 (6)0.0012 (7)−0.0040 (6)

Geometric parameters (Å, °)

C9—N11.422 (2)C3—C41.390 (2)
C9—Cl21.8009 (18)C3—H30.9300
C9—H9A0.9700C4—C51.379 (2)
C9—H9B0.9700C4—H40.9300
Cl1—C71.7664 (17)C5—C61.388 (2)
Cl3—C71.7856 (16)C5—N11.414 (2)
C1—C61.378 (2)C6—C71.490 (2)
C1—C21.389 (3)C7—C81.551 (2)
C1—H10.9300C8—O11.200 (2)
C2—C31.378 (3)C8—N11.369 (2)
C2—H20.9300
N1—C9—Cl2111.84 (12)C4—C5—C6122.06 (15)
N1—C9—H9A109.2C4—C5—N1127.79 (14)
Cl2—C9—H9A109.2C6—C5—N1110.15 (13)
N1—C9—H9B109.2C1—C6—C5120.33 (15)
Cl2—C9—H9B109.2C1—C6—C7131.67 (15)
H9A—C9—H9B107.9C5—C6—C7107.99 (14)
C6—C1—C2118.30 (16)C6—C7—C8103.95 (12)
C6—C1—H1120.9C6—C7—Cl1113.78 (12)
C2—C1—H1120.9C8—C7—Cl1109.59 (12)
C3—C2—C1120.73 (17)C6—C7—Cl3112.65 (12)
C3—C2—H2119.6C8—C7—Cl3107.40 (11)
C1—C2—H2119.6Cl1—C7—Cl3109.15 (8)
C2—C3—C4121.61 (16)O1—C8—N1127.02 (16)
C2—C3—H3119.2O1—C8—C7126.84 (15)
C4—C3—H3119.2N1—C8—C7106.13 (13)
C5—C4—C3116.96 (16)C8—N1—C5111.52 (13)
C5—C4—H4121.5C8—N1—C9123.16 (14)
C3—C4—H4121.5C5—N1—C9125.26 (13)
C6—C1—C2—C3−0.1 (3)C6—C7—C8—O1−175.08 (17)
C1—C2—C3—C40.1 (3)Cl1—C7—C8—O1−53.1 (2)
C2—C3—C4—C5−0.2 (3)Cl3—C7—C8—O165.3 (2)
C3—C4—C5—C60.3 (2)C6—C7—C8—N14.91 (17)
C3—C4—C5—N1179.42 (16)Cl1—C7—C8—N1126.87 (12)
C2—C1—C6—C50.2 (3)Cl3—C7—C8—N1−114.67 (12)
C2—C1—C6—C7−179.47 (18)O1—C8—N1—C5174.89 (17)
C4—C5—C6—C1−0.3 (2)C7—C8—N1—C5−5.10 (18)
N1—C5—C6—C1−179.56 (15)O1—C8—N1—C9−2.4 (3)
C4—C5—C6—C7179.42 (15)C7—C8—N1—C9177.62 (14)
N1—C5—C6—C70.16 (18)C4—C5—N1—C8−175.89 (16)
C1—C6—C7—C8176.63 (17)C6—C5—N1—C83.31 (19)
C5—C6—C7—C8−3.04 (17)C4—C5—N1—C91.3 (3)
C1—C6—C7—Cl157.5 (2)C6—C5—N1—C9−179.48 (15)
C5—C6—C7—Cl1−122.18 (13)Cl2—C9—N1—C898.78 (17)
C1—C6—C7—Cl3−67.4 (2)Cl2—C9—N1—C5−78.12 (19)
C5—C6—C7—Cl3112.91 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.573.173 (2)123
C9—H9A···O10.972.562.879 (2)100
C9—H9A···O1ii0.972.523.256 (2)133

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1.

Table 2 π–π interactions

Cg(A)Cg(B)Cg(A)···Cg(B) (Å)sym. code Cg(B)
Cg1Cg14.134 (7)x, -y +3/2, z-1/2
Cg1Cg14.134 (6)x, -y +3/2, z+1/2
Cg1Cg24.238 (7)x, -y +3/2, z-1/2

* Cg1, Cg2 are the centroids of C1-C2-C3-C4-C5-C6 (benzene) and C5-C6-C7-C8-N1 (pyrrole),respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2158).

References

  • Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Höhme, H. & Schwartz, H. (1973). Arch. Pharm.306, 684–692. [PubMed]
  • Höhme, H. & Schwartz, H. (1974). Arch. Pharm.307, 775–779. [PubMed]
  • Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J.12, 2222–2234. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography