PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1374.
Published online 2010 October 9. doi:  10.1107/S1600536810039632
PMCID: PMC3009247

catena-Poly[[[tetra­aqua­iron(II)]-μ-5,5′-diazenediylditetra­zolido] dihydrate]

Abstract

In the title compound, {[Fe(C2N10)(H2O)4]·2H2O}n, the coordin­ation geometry around the Fe(II) atom, which lies on a center of inversion, is distorted octa­hedral, with bonds to four O atoms and two N atoms. The azotetra­zolate ligand displays a bridging coordination mode, forming an infinite zigzag chain. Inter­molecular O—H(...)O and O—H(...)N hydrogen bonding and offset face-to-face π–π stacking inter­actions [centroid–centroid distance = 3.4738 (13) Å] lead to a three-dimensional network.

Related literature

For energetic complexes, see: Hammerl et al. (2001 [triangle], 2002 [triangle]); Jiao et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1374-scheme1.jpg

Experimental

Crystal data

  • [Fe(C2N10)(H2O)4]·2H2O
  • M r = 328.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1374-efi1.jpg
  • a = 6.2449 (5) Å
  • b = 6.9764 (6) Å
  • c = 7.8256 (6) Å
  • α = 76.424 (1)°
  • β = 74.135 (1)°
  • γ = 69.844 (1)°
  • V = 304.11 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 273 K
  • 0.30 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.699, T max = 0.861
  • 1564 measured reflections
  • 1061 independent reflections
  • 973 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.070
  • S = 1.13
  • 1061 reflections
  • 106 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039632/ng5036sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039632/ng5036Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the National Science Foundation of China (No. 20873100), the Natural Science Foundation of Shaanxi Province (2009JQ2015), the Special Foundation of the Education Department of Shaanxi Province (09 J K798) and the Research Foundation of Xi’an University of Arts and Science (kyc201026).

supplementary crystallographic information

Comment

After Thiele prepared metallic salts of azotetrazole and claimed these for use in initiators, salts of AT2- (AT = 5,5'-azotetrazolate) have been extensively investigated and have often been considered for practical use as a class of energetic materials. We report here the crystal structure of the title compound, [Fe(C2N10)(H20)4.2H20]n, (I).

Single-crystal analysis shows that (I) exists as a one-dimensional infinite chain. As shown in Figure 1, the coordination geometry around Fe2+ cation can be described a disordered octahedral arrangement with coordination number of 6, where O1, O2, O1A and O2A form the equatorial plane, and axial positions are occupied by N1 and N1A. Additionally, each AT2- provides two terminal nitrogen atoms (N1 and N1A) acting as bridging ligand to connect two [Fe(H2O)4]2+ to form an infinite zigzag chain.

In the crystal structure, the interactions of hydrogen bonding between the water molecules and the N atoms in the terazole rings, the off-set face to face π-π stacking interactions of the terazole rings link the complex to a three dimensional structure, as shown in Figure 2.

Experimental

Brown block-like crystal for X-ray diffraction analysis was obtained from the mixture of (NH4)2Fe(SO4)2.6H2O (0.392 g, 1 mmol), Na2AT.5H2O (0.304 g,1 mmol) and distilled H2O (20 ml), which was allowed to evaporate at room temperature for one week.

Refinement

H atoms attached to O atoms were placed in calculated positions, with O—H distances of 0.86 Å. The Uiso(H) values were constrained to be -1.5Ueq of the carrier atom.

Figures

Fig. 1.
A view of the molecular structure of (I) with the atom-labling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Three dimensional network of the title complex.

Crystal data

[Fe(C2N10)(H2O)4]·2H2OZ = 1
Mr = 328.07F(000) = 168
Triclinic, P1Dx = 1.791 Mg m3
a = 6.2449 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.9764 (6) ÅCell parameters from 1061 reflections
c = 7.8256 (6) Åθ = 2.7–25.1°
α = 76.424 (1)°µ = 1.29 mm1
β = 74.135 (1)°T = 273 K
γ = 69.844 (1)°Block, brown
V = 304.11 (4) Å30.30 × 0.18 × 0.12 mm

Data collection

Bruker SMART APEX CCD diffractometer1061 independent reflections
Radiation source: fine-focus sealed tube973 reflections with I > 2σ(I)
graphiteRint = 0.012
[var phi] and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −7→6
Tmin = 0.699, Tmax = 0.861k = −7→8
1564 measured reflectionsl = −8→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0447P)2 + 0.0115P] where P = (Fo2 + 2Fc2)/3
1061 reflections(Δ/σ)max = 0.007
106 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.50000.50001.00000.02375 (17)
N10.5314 (3)0.6482 (3)0.7101 (2)0.0240 (4)
N20.3404 (3)0.7685 (3)0.6503 (2)0.0287 (4)
N30.3949 (3)0.8147 (3)0.4742 (2)0.0323 (4)
N40.6210 (3)0.7259 (3)0.4135 (2)0.0287 (4)
N50.9299 (3)0.5062 (3)0.5738 (2)0.0253 (4)
O10.8288 (3)0.2802 (3)0.9369 (2)0.0340 (4)
O20.6617 (3)0.6912 (3)1.0508 (2)0.0403 (4)
O30.8598 (3)0.9497 (3)0.7946 (2)0.0342 (4)
C10.7009 (3)0.6250 (3)0.5618 (3)0.0228 (4)
H1A0.829 (4)0.172 (3)0.903 (3)0.034*
H2A0.710 (4)0.784 (3)0.975 (3)0.034*
H3A1.002 (2)0.886 (3)0.754 (3)0.034*
H1B0.922 (4)0.329 (4)0.851 (2)0.034*
H2B0.658 (4)0.707 (4)1.1563 (18)0.034*
H3B0.797 (4)1.008 (3)0.705 (2)0.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0192 (2)0.0327 (3)0.0151 (2)−0.00481 (17)−0.00252 (16)−0.00163 (17)
N10.0186 (9)0.0307 (9)0.0172 (9)−0.0021 (7)−0.0026 (7)−0.0026 (7)
N20.0214 (9)0.0379 (10)0.0198 (9)−0.0024 (8)−0.0035 (7)−0.0022 (8)
N30.0273 (10)0.0406 (10)0.0218 (10)−0.0020 (8)−0.0073 (8)−0.0014 (8)
N40.0242 (9)0.0389 (10)0.0168 (9)−0.0043 (8)−0.0021 (7)−0.0034 (8)
N50.0211 (9)0.0336 (9)0.0162 (8)−0.0053 (7)−0.0002 (6)−0.0033 (7)
O10.0260 (8)0.0398 (9)0.0283 (9)−0.0044 (7)−0.0020 (7)−0.0033 (7)
O20.0526 (11)0.0589 (11)0.0188 (9)−0.0333 (9)−0.0034 (8)−0.0035 (8)
O30.0234 (8)0.0433 (9)0.0255 (9)−0.0014 (7)−0.0055 (7)0.0017 (7)
C10.0210 (10)0.0285 (10)0.0154 (10)−0.0059 (8)−0.0023 (8)−0.0010 (8)

Geometric parameters (Å, °)

Fe1—O22.0868 (15)N4—C11.335 (3)
Fe1—O2i2.0868 (15)N5—N5ii1.245 (3)
Fe1—O1i2.1081 (16)N5—C11.400 (3)
Fe1—O12.1081 (16)O1—H1A0.854 (10)
Fe1—N12.2474 (16)O1—H1B0.851 (10)
Fe1—N1i2.2474 (16)O2—H2A0.848 (10)
N1—N21.333 (2)O2—H2B0.850 (10)
N1—C11.338 (3)O3—H3A0.852 (10)
N2—N31.315 (3)O3—H3B0.844 (10)
N3—N41.331 (3)
O2—Fe1—O2i180.0N2—N1—Fe1119.64 (12)
O2—Fe1—O1i90.39 (7)C1—N1—Fe1134.93 (13)
O2i—Fe1—O1i89.61 (7)N3—N2—N1109.13 (16)
O2—Fe1—O189.61 (7)N2—N3—N4110.32 (16)
O2i—Fe1—O190.39 (7)N3—N4—C1104.10 (16)
O1i—Fe1—O1180.0N5ii—N5—C1114.3 (2)
O2—Fe1—N191.16 (6)Fe1—O1—H1A116.1 (17)
O2i—Fe1—N188.84 (6)Fe1—O1—H1B112.4 (17)
O1i—Fe1—N189.55 (6)H1A—O1—H1B104 (2)
O1—Fe1—N190.45 (6)Fe1—O2—H2A126.3 (16)
O2—Fe1—N1i88.84 (6)Fe1—O2—H2B123.0 (16)
O2i—Fe1—N1i91.16 (6)H2A—O2—H2B109 (2)
O1i—Fe1—N1i90.45 (6)H3A—O3—H3B107 (2)
O1—Fe1—N1i89.55 (6)N4—C1—N1111.80 (17)
N1—Fe1—N1i180.0N4—C1—N5127.64 (18)
N2—N1—C1104.65 (15)N1—C1—N5120.57 (17)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.85 (1)1.86 (1)2.699 (2)170 (2)
O1—H1A···O3iii0.85 (1)1.87 (1)2.715 (2)171 (3)
O1—H1B···N50.85 (1)2.23 (2)2.926 (2)139 (2)
O3—H3B···N3iv0.84 (1)2.01 (1)2.839 (2)169 (2)
O3—H3A···N2v0.85 (1)2.00 (1)2.843 (2)173 (2)
O2—H2B···N3vi0.85 (1)2.69 (2)3.439 (2)148 (2)
O2—H2B···N4vi0.85 (1)1.99 (1)2.840 (2)173 (2)

Symmetry codes: (iii) x, y−1, z; (iv) −x+1, −y+2, −z+1; (v) x+1, y, z; (vi) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5036).

References

  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hammerl, A., Gerhard, H., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834–845.
  • Hammerl, A., Klapötke, T. M., Nöth, H. & Warchhold, M. (2001). Inorg. Chem.40, 3570–3575. [PubMed]
  • Jiao, B. J., Chen, S. P., Zhao, F. Q., Hu, R. Z. & Gao, S. L. (2007). J. Hazard. Mater.142, 550–554. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography