PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2838.
Published online 2010 October 20. doi:  10.1107/S1600536810040584
PMCID: PMC3009245

4-Amino-3,5-dichloro­benzene­sulfonamide

Abstract

In the title compound, C6H6Cl2N2O2S, the O atoms of the sulfonamide group lie on one side of the benzene ring and the amino group lies on the opposite side. An inter­molecular N—H(...)Cl inter­action occurs. In the crystal, adjacent mol­ecules are linked by N—H(...)O hydrogen bonds, forming a three-dimensional structure with supporting π–π stacking inter­actions [centroid–centroid distance = 3.7903 (12) Å]. A short Cl(...)Cl contact [3.3177 (10) Å] also occurs.

Related literature

For the preparation, see: Qiu & Lv (2005 [triangle]). For Cl(...)Cl contacts, see: Sakurai et al. (1963 [triangle]); Stone et al. (1994 [triangle]); Qin et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2838-scheme1.jpg

Experimental

Crystal data

  • C6H6Cl2N2O2S
  • M r = 241.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2838-efi1.jpg
  • a = 8.9544 (17) Å
  • b = 13.387 (3) Å
  • c = 7.5673 (15) Å
  • β = 95.809 (2)°
  • V = 902.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 93 K
  • 0.30 × 0.27 × 0.13 mm

Data collection

  • Rigaku SPIDER diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.771, T max = 0.888
  • 5918 measured reflections
  • 2008 independent reflections
  • 1759 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.074
  • S = 1.00
  • 2008 reflections
  • 134 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040584/nk2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040584/nk2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the College of Pharmacy, Guilin Medical University, People’s Republic of China for supporting this study.

supplementary crystallographic information

Comment

4-Amino-3,5-dichloro-benzenesulfonamide is a primary substance used to synthesize Diclofenac sodium. Although the synthetic methods of the title compound has been reported (Qiu & Lv, 2005), no crystal structure data have been published so far. Our experimental aim was to obtain a Co(II) complex by preparing the potassium salt of 4-amino-3,5-dichloro-benzenesulfonamide modified by salicylaldehyde, and then reacting with CoCl2.6H2O To our surprise, we obtained yellow crystals which were identified as the title compound. Here, we report the synthesis and crystal structure of the title compound.

In the title compound, C6H6Cl2N2O2S, the amino and chlorine substituent groups are essentially co-planar (maximum r.m.s. deviation of fitted atoms is -0.0747 Å) with the benzene ring to which they are bonded. The O atoms of the sulfonamide group lie on one side of the benzene ring and the amino group lies on the opposite side (Scheme I, Fig. 1)

In the crystal, molecules are linked by intermolecular hydrogen bonds N—H···O (Fig.2., Table 2) and π–π stacking interactions [3.790 Å, the distance of the centroids between the two benzene rings, symmetry code as x, -y + 1/2, z + 1/2 and x, -y + 1/2, z - 1/2], and a short Cl···Cl contact [3.318 Å, symmetry code as -x, -y - 1, -z] occurs (Fig. 2). The Cl···Cl contact is stronger than that of the [Zn(II)(C8H7O4NCl2S)(Phen)(H2O)]3 (Qin et al., 2008).

Experimental

Powdered 4-amino-3,5-dichloro-benzenesulfonamide (2.671 g, 10.08 mmol), KOH(0.504 g, 9.0 mmol) and salicylaldehyde (0.53 ml, 5.01 mmol) were mixed in methanol (40 ml). The mixture was stirred at 323 K for 2 h. Then, 1.30 ml solution was taken out from the mixed solution was added into a solution of CoCl2.6H2O(0.060 g, 0.25 mmol) in methanol (25 ml). This mixture has been stirred at 323 K for 8 h. Subsequently, the reagents were filtrated. The resulting solution was left at room temperature, orange-yellow crystals were obtained after some days.

Refinement

All H atoms were geometrically positioned and refined using a mixed model, with distance restraints of C—H = 0.9500 and N—H = 0.80 (2)–0.86 (3) Å, and withUiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
Fig. 2.
The packing of (I), viewed down the c axis, showing layers of molecules conneted by N—H···O hydrogen bonds, Cl···Cl contact and π–π stacking interactions.

Crystal data

C6H6Cl2N2O2SF(000) = 488
Mr = 241.09Dx = 1.774 Mg m3
Monoclinic, P21/cMelting point = 207.2–207.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9544 (17) ÅCell parameters from 2008 reflections
b = 13.387 (3) Åθ = 3.0–27.5°
c = 7.5673 (15) ŵ = 0.92 mm1
β = 95.809 (2)°T = 93 K
V = 902.4 (3) Å3Block, orange-yellow
Z = 40.30 × 0.27 × 0.13 mm

Data collection

Rigaku SPIDER diffractometer2008 independent reflections
Radiation source: rotating anode1759 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.771, Tmax = 0.888k = −17→10
5918 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0461P)2 + 0.260P] where P = (Fo2 + 2Fc2)/3
2008 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.24595 (5)0.01031 (3)0.45203 (6)0.01881 (13)
Cl20.00000 (5)0.37179 (3)0.29728 (7)0.02268 (13)
S10.57265 (5)0.34844 (3)0.58837 (6)0.01325 (12)
O10.53529 (14)0.43437 (9)0.68889 (17)0.0171 (3)
O20.67408 (13)0.27471 (9)0.67149 (18)0.0190 (3)
N10.00496 (18)0.15006 (13)0.3074 (2)0.0198 (4)
N20.64946 (18)0.39096 (12)0.4206 (2)0.0166 (3)
C10.40449 (19)0.28746 (13)0.5127 (2)0.0135 (3)
C20.39422 (19)0.18356 (12)0.5117 (2)0.0137 (3)
H20.47780.14370.55510.016*
C30.26064 (19)0.13958 (13)0.4466 (2)0.0145 (4)
C40.13407 (19)0.19420 (13)0.3762 (2)0.0143 (4)
C50.15166 (19)0.29916 (13)0.3806 (2)0.0155 (4)
C60.28195 (19)0.34575 (13)0.4475 (2)0.0151 (4)
H60.28850.41660.44930.018*
H1A−0.001 (3)0.0906 (19)0.305 (3)0.032 (7)*
H2A0.604 (3)0.4378 (17)0.375 (3)0.022 (6)*
H1B−0.071 (3)0.1841 (18)0.277 (3)0.033 (7)*
H2B0.665 (3)0.3444 (19)0.346 (4)0.039 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0172 (2)0.0123 (2)0.0260 (2)−0.00223 (16)−0.00262 (17)−0.00010 (16)
Cl20.0118 (2)0.0194 (2)0.0355 (3)0.00248 (17)−0.00420 (18)0.00595 (19)
S10.0103 (2)0.0123 (2)0.0165 (2)−0.00140 (15)−0.00131 (16)0.00062 (15)
O10.0175 (7)0.0159 (6)0.0177 (6)−0.0018 (5)0.0006 (5)−0.0024 (5)
O20.0132 (7)0.0156 (6)0.0267 (7)−0.0008 (5)−0.0049 (5)0.0048 (5)
N10.0123 (9)0.0168 (8)0.0287 (9)−0.0024 (7)−0.0059 (7)0.0018 (7)
N20.0154 (8)0.0138 (7)0.0207 (8)−0.0003 (6)0.0027 (6)−0.0002 (6)
C10.0112 (9)0.0153 (8)0.0137 (8)−0.0015 (6)0.0005 (7)−0.0005 (7)
C20.0120 (9)0.0142 (8)0.0146 (8)0.0005 (7)0.0003 (7)0.0006 (7)
C30.0152 (9)0.0123 (8)0.0160 (8)−0.0006 (7)0.0017 (7)0.0008 (6)
C40.0113 (9)0.0174 (8)0.0140 (8)−0.0019 (7)0.0003 (7)0.0004 (7)
C50.0123 (9)0.0168 (8)0.0172 (9)0.0036 (7)0.0007 (7)0.0036 (7)
C60.0138 (9)0.0120 (8)0.0195 (9)0.0004 (6)0.0020 (7)0.0008 (7)

Geometric parameters (Å, °)

Cl1—C31.7363 (18)N2—H2B0.86 (3)
Cl2—C51.7360 (17)C1—C21.394 (2)
S1—O11.4370 (13)C1—C61.395 (2)
S1—O21.4419 (13)C2—C31.379 (2)
S1—N21.6078 (16)C2—H20.9500
S1—C11.7571 (18)C3—C41.407 (2)
N1—C41.355 (2)C4—C51.414 (2)
N1—H1A0.80 (2)C5—C61.374 (2)
N1—H1B0.83 (3)C6—H60.9500
N2—H2A0.81 (2)
O1—S1—O2119.15 (8)C3—C2—C1118.85 (16)
O1—S1—N2106.00 (8)C3—C2—H2120.6
O2—S1—N2106.61 (8)C1—C2—H2120.6
O1—S1—C1107.86 (8)C2—C3—C4123.34 (16)
O2—S1—C1107.78 (8)C2—C3—Cl1118.83 (13)
N2—S1—C1109.15 (8)C4—C3—Cl1117.83 (13)
C4—N1—H1A119.6 (18)N1—C4—C3122.82 (17)
C4—N1—H1B120.7 (17)N1—C4—C5122.09 (16)
H1A—N1—H1B119 (2)C3—C4—C5115.08 (15)
S1—N2—H2A112.2 (16)C6—C5—C4123.25 (16)
S1—N2—H2B111.9 (17)C6—C5—Cl2118.92 (14)
H2A—N2—H2B113 (2)C4—C5—Cl2117.83 (13)
C2—C1—C6120.47 (16)C5—C6—C1118.99 (16)
C2—C1—S1121.28 (13)C5—C6—H6120.5
C6—C1—S1118.21 (13)C1—C6—H6120.5
O1—S1—C1—C2−140.05 (14)Cl1—C3—C4—N1−2.6 (2)
O2—S1—C1—C2−10.20 (17)C2—C3—C4—C5−1.5 (3)
N2—S1—C1—C2105.21 (15)Cl1—C3—C4—C5178.10 (13)
O1—S1—C1—C642.09 (16)N1—C4—C5—C6−179.13 (17)
O2—S1—C1—C6171.94 (13)C3—C4—C5—C60.2 (3)
N2—S1—C1—C6−72.65 (16)N1—C4—C5—Cl21.0 (2)
C6—C1—C2—C3−0.5 (3)C3—C4—C5—Cl2−179.65 (13)
S1—C1—C2—C3−178.35 (13)C4—C5—C6—C10.8 (3)
C1—C2—C3—C41.7 (3)Cl2—C5—C6—C1−179.29 (13)
C1—C2—C3—Cl1−177.91 (13)C2—C1—C6—C5−0.7 (3)
C2—C3—C4—N1177.82 (17)S1—C1—C6—C5177.19 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.80 (2)2.60 (2)2.9793 (18)111 (2)
N2—H2A···O1i0.81 (2)2.14 (2)2.935 (2)167 (2)
N1—H1B···O2ii0.83 (3)2.40 (3)3.199 (2)160 (2)
N2—H2B···O2iii0.86 (3)2.08 (3)2.934 (2)172 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, −y+1/2, z−1/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2060).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Qin, X.-Y., Li, G.-Z., Zhang, S.-H. & Liu, Z. (2008). J. Synth. Cryst. 37, 1448–1452.
  • Qiu, M.-Y. & Lv, D.-J. (2005). Appl. Chem. Ind.34, 115–116.
  • Rigaku (2004). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst.16, 354–363.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stone, A. J., Lucas, J., Rowland, R. S. & Thornley, A. E. (1994). J. Am. Chem. Soc.116, 4910–4918.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography