PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3038.
Published online 2010 October 31. doi:  10.1107/S1600536810044090
PMCID: PMC3009238

N,N′-Bis(2-chloro­phen­yl)propane­diamide

Abstract

The crystal structure of the title compound, C15H12Cl2N2O2, contains three intramolecular hydrogen bonds; two C—H(...)O and a nonclassical N—H(...)Cl. The structure is further stabilized by intermolecular N—H(...)O hydrogen bonds and C—H(...)π interactions, resulting in a three-dimensional network. The two benzene rings make an interplanar angle of 58.0 (1)°.

Related literature

For literature on related compounds, see: Gowda et al. (2007 [triangle], 2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3038-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2N2O2
  • M r = 323.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3038-efi1.jpg
  • a = 13.8819 (9) Å
  • b = 15.3556 (10) Å
  • c = 7.0316 (5) Å
  • β = 104.027 (7)°
  • V = 1454.19 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 295 K
  • 0.57 × 0.54 × 0.15 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.743, T max = 0.938
  • 13088 measured reflections
  • 2687 independent reflections
  • 1930 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.127
  • S = 1.03
  • 2687 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044090/bt5396sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044090/bt5396Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi for the award of a research fellowship.

supplementary crystallographic information

Comment

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of substitutions on the structures of this class of compounds (Gowda et al., 2007; 2009; 2010), the crystal structure of N,N-bis(2-chlorophenyl)-malonamide has been determined (I) (Fig. 1).

The molecular structure of (I) includes three intermolecular hydrogen bonds (Table 1); two of them are C–H···O hydrogen bonds, the third is a non- classical N–H···Cl hydrogen bond. The two phenyl rings make an interplanar angle of 58.0 (1)°. The dihedral angle made by the two amido groups is 65.0 (2)°. The conformation of the ortho-chlorosubstituent is anti to the nearest carbonyl C=O bond, as indicated by the torsion angles, C2—C1—N1—C7 = -156.1 (2)° and C11—C10—N2—C9 = 137.2 (2)° in the first and the second phenyl rings, respectively. The chlorine Cl atom attached to the C1/C6 phenyl ring gives rise to a non conventional N–H···Cl hydrogen bond, with N–Cl distance of 2.9730 (18) Å and angle of 109°. The second chlorine atom, attached to the C10/C15 phenyl ring, makes a short intramolecular contact of 2.960 (2)Å with the nearest amide N atom, forming the N–H···Cl angle of 98°. In the crystal, the molecules are linked by intermolecular N–H···O hydrogen bonds into the chains running along the base vector [0 1 1] parallel to the bc-plane (Fig. 2). The chains are further stabilized by C–H···π interaction between the C3 atom of the C1/C6 ring and the centroid Cg2 of the phenyl ring C10/C15 at the position (-x, y + 1/2, -z + 1/2).

Experimental

Malonic acid (0.3 mol) in dichloromethane (30 ml) was treated with 2-chloroaniline (0.6 mol) in dichloromethane (30 ml), dropwise with stirring. The resulting mixture was stirred for 3 hrs and kept aside for 12 hrs for the completion of reaction and evaporation of the solvent, dichloromethane. The product obtained was added to crushed ice to obtain the precipitate. The latter was thoroughly washed with water and then with saturated sodium bicarbonate solution and washed again with water. It was then given a wash with 2 N HCl. It was again washed with water, filtered, dried and recrystallized to the constant melting point from ethanol.

Block like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its ehanolic solution at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and N–H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C, N).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Three intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
Packing diagram of (I) with hydrogen bonds indicated by dashed lines. The hydrogen atoms not participating in hydrogen bonding have been omitted. Cg2 is the centroid of the C10/C15 phenyl ring.

Crystal data

C15H12Cl2N2O2F(000) = 664
Mr = 323.17Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6793 reflections
a = 13.8819 (9) Åθ = 3.7–29.3°
b = 15.3556 (10) ŵ = 0.45 mm1
c = 7.0316 (5) ÅT = 295 K
β = 104.027 (7)°Block, colorless
V = 1454.19 (17) Å30.57 × 0.54 × 0.14 mm
Z = 4

Data collection

Oxford Diffraction Gemini R CCD diffractometer2687 independent reflections
graphite1930 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.042
ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)h = −15→16
Tmin = 0.743, Tmax = 0.938k = −15→18
13088 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3
2687 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.19293 (15)0.77176 (14)0.5062 (3)0.0449 (5)
C2−0.19188 (15)0.86196 (14)0.4842 (3)0.0469 (5)
C3−0.27859 (19)0.90983 (16)0.4347 (3)0.0582 (6)
H3−0.27640.970.4220.07*
C4−0.36823 (18)0.86717 (19)0.4044 (4)0.0666 (7)
H4−0.42720.89860.37040.08*
C5−0.37089 (17)0.77888 (18)0.4241 (4)0.0635 (7)
H5−0.43190.75080.40310.076*
C6−0.28444 (16)0.73034 (16)0.4747 (3)0.0543 (6)
H6−0.28760.67020.48750.065*
C7−0.08275 (16)0.64231 (14)0.5353 (3)0.0444 (5)
C80.02513 (16)0.61601 (14)0.6081 (3)0.0465 (5)
H8A0.05150.64110.73690.056*
H8B0.02920.55310.62110.056*
C90.08797 (15)0.64552 (15)0.4718 (3)0.0437 (5)
C100.23819 (17)0.60854 (14)0.3636 (3)0.0494 (5)
C110.33523 (18)0.58501 (16)0.4524 (3)0.0567 (6)
C120.4116 (2)0.60164 (18)0.3623 (4)0.0701 (7)
H120.47630.5850.42240.084*
C130.3912 (2)0.6429 (2)0.1836 (4)0.0764 (8)
H130.44220.65470.12280.092*
C140.2958 (2)0.66657 (18)0.0949 (4)0.0710 (7)
H140.28250.6947−0.02580.085*
C150.21891 (19)0.64911 (16)0.1830 (4)0.0595 (6)
H150.15420.66470.12060.071*
N1−0.10196 (12)0.72631 (11)0.5652 (3)0.0479 (4)
H1N−0.05230.75640.62870.057*
N20.16193 (13)0.59006 (12)0.4599 (3)0.0514 (5)
H2N0.16270.53990.51480.062*
O1−0.14642 (13)0.59039 (10)0.4540 (3)0.0607 (4)
O20.07446 (11)0.71541 (10)0.3868 (2)0.0543 (4)
Cl1−0.07891 (4)0.91714 (4)0.52012 (9)0.0599 (2)
Cl20.36153 (5)0.53220 (6)0.67829 (10)0.0792 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0449 (12)0.0454 (14)0.0446 (11)0.0017 (9)0.0115 (9)−0.0026 (9)
C20.0521 (13)0.0417 (14)0.0490 (12)0.0019 (10)0.0164 (10)−0.0002 (9)
C30.0653 (16)0.0489 (15)0.0625 (15)0.0124 (12)0.0192 (12)0.0028 (11)
C40.0545 (15)0.072 (2)0.0730 (17)0.0135 (13)0.0144 (12)0.0016 (13)
C50.0466 (13)0.074 (2)0.0698 (16)−0.0023 (12)0.0144 (11)−0.0043 (13)
C60.0515 (13)0.0530 (15)0.0605 (13)−0.0026 (11)0.0173 (11)−0.0016 (11)
C70.0541 (13)0.0376 (13)0.0424 (11)−0.0014 (10)0.0134 (10)0.0026 (9)
C80.0534 (13)0.0413 (13)0.0449 (11)0.0057 (10)0.0121 (10)0.0009 (9)
C90.0464 (12)0.0392 (13)0.0438 (11)−0.0002 (10)0.0075 (9)−0.0033 (9)
C100.0526 (13)0.0401 (13)0.0584 (13)0.0017 (10)0.0189 (10)−0.0028 (10)
C110.0546 (14)0.0564 (16)0.0598 (14)−0.0020 (11)0.0151 (11)−0.0047 (11)
C120.0548 (15)0.077 (2)0.0827 (19)−0.0055 (13)0.0240 (14)−0.0054 (15)
C130.0774 (19)0.077 (2)0.088 (2)−0.0130 (16)0.0453 (16)−0.0037 (16)
C140.091 (2)0.0587 (17)0.0704 (16)−0.0004 (14)0.0334 (15)0.0047 (13)
C150.0691 (16)0.0501 (14)0.0620 (14)0.0044 (12)0.0210 (12)0.0043 (11)
N10.0429 (10)0.0368 (11)0.0623 (11)−0.0002 (8)0.0096 (8)−0.0050 (8)
N20.0529 (11)0.0420 (11)0.0614 (11)0.0048 (8)0.0178 (9)0.0070 (8)
O10.0604 (10)0.0435 (10)0.0734 (11)−0.0032 (8)0.0069 (8)−0.0059 (8)
O20.0569 (9)0.0424 (10)0.0649 (9)0.0056 (7)0.0172 (7)0.0097 (7)
Cl10.0637 (4)0.0444 (4)0.0747 (4)−0.0066 (3)0.0230 (3)−0.0025 (3)
Cl20.0572 (4)0.1069 (6)0.0703 (5)0.0077 (3)0.0092 (3)0.0168 (4)

Geometric parameters (Å, °)

C1—C61.390 (3)C8—H8B0.97
C1—C21.394 (3)C9—O21.221 (3)
C1—N11.414 (3)C9—N21.352 (3)
C2—C31.381 (3)C10—C151.381 (3)
C2—Cl11.746 (2)C10—C111.388 (3)
C3—C41.376 (3)C10—N21.417 (3)
C3—H30.93C11—C121.385 (3)
C4—C51.364 (4)C11—Cl21.742 (2)
C4—H40.93C12—C131.374 (4)
C5—C61.384 (3)C12—H120.93
C5—H50.93C13—C141.370 (4)
C6—H60.93C13—H130.93
C7—O11.224 (2)C14—C151.384 (3)
C7—N11.344 (3)C14—H140.93
C7—C81.515 (3)C15—H150.93
C8—C91.514 (3)N1—H1N0.86
C8—H8A0.97N2—H2N0.86
C6—C1—C2118.09 (19)O2—C9—N2123.54 (19)
C6—C1—N1122.5 (2)O2—C9—C8121.98 (18)
C2—C1—N1119.36 (18)N2—C9—C8114.42 (19)
C3—C2—C1121.7 (2)C15—C10—C11118.8 (2)
C3—C2—Cl1118.39 (18)C15—C10—N2121.9 (2)
C1—C2—Cl1119.95 (16)C11—C10—N2119.3 (2)
C4—C3—C2119.1 (2)C12—C11—C10120.9 (2)
C4—C3—H3120.5C12—C11—Cl2119.2 (2)
C2—C3—H3120.5C10—C11—Cl2119.83 (18)
C5—C4—C3120.2 (2)C13—C12—C11119.5 (3)
C5—C4—H4119.9C13—C12—H12120.3
C3—C4—H4119.9C11—C12—H12120.3
C4—C5—C6121.2 (2)C14—C13—C12120.1 (3)
C4—C5—H5119.4C14—C13—H13119.9
C6—C5—H5119.4C12—C13—H13119.9
C5—C6—C1119.8 (2)C13—C14—C15120.7 (3)
C5—C6—H6120.1C13—C14—H14119.7
C1—C6—H6120.1C15—C14—H14119.7
O1—C7—N1123.4 (2)C10—C15—C14120.0 (2)
O1—C7—C8121.79 (19)C10—C15—H15120
N1—C7—C8114.84 (19)C14—C15—H15120
C9—C8—C7112.33 (17)C7—N1—C1128.66 (18)
C9—C8—H8A109.1C7—N1—H1N115.7
C7—C8—H8A109.1C1—N1—H1N115.7
C9—C8—H8B109.1C9—N2—C10124.75 (19)
C7—C8—H8B109.1C9—N2—H2N117.6
H8A—C8—H8B107.9C10—N2—H2N117.6
C6—C1—C2—C30.7 (3)C15—C10—C11—Cl2−178.97 (18)
N1—C1—C2—C3−177.32 (19)N2—C10—C11—Cl20.8 (3)
C6—C1—C2—Cl1−179.48 (15)C10—C11—C12—C130.7 (4)
N1—C1—C2—Cl12.5 (3)Cl2—C11—C12—C13179.7 (2)
C1—C2—C3—C4−0.7 (3)C11—C12—C13—C14−0.5 (4)
Cl1—C2—C3—C4179.50 (18)C12—C13—C14—C15−0.3 (4)
C2—C3—C4—C50.3 (4)C11—C10—C15—C14−0.8 (4)
C3—C4—C5—C60.0 (4)N2—C10—C15—C14179.5 (2)
C4—C5—C6—C10.0 (4)C13—C14—C15—C101.0 (4)
C2—C1—C6—C5−0.4 (3)O1—C7—N1—C1−2.9 (3)
N1—C1—C6—C5177.61 (19)C8—C7—N1—C1176.46 (18)
O1—C7—C8—C9101.8 (2)C6—C1—N1—C726.0 (3)
N1—C7—C8—C9−77.5 (2)C2—C1—N1—C7−156.1 (2)
C7—C8—C9—O237.4 (3)O2—C9—N2—C106.1 (3)
C7—C8—C9—N2−145.36 (18)C8—C9—N2—C10−171.12 (19)
C15—C10—C11—C120.0 (4)C15—C10—N2—C9−43.0 (3)
N2—C10—C11—C12179.7 (2)C11—C10—N2—C9137.2 (2)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10/C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.243.038 (2)154
N2—H2N···O1ii0.862.032.856 (2)160
C8—H8A···O2i0.972.433.219 (3)138
C15—H15···O2iii0.932.543.265 (3)135
C3—H3···Cg2iv0.932.743.608 (2)155
C6—H6···O10.932.372.906 (3)116
C15—H15···O20.932.522.916 (3)106
N1—H1N···Cl10.862.582.9730 (18)109

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z+1; (iii) x, −y+3/2, z−1/2; (iv) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5396).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516. [PMC free article] [PubMed]
  • Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
  • Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1363. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography