PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1375–m1376.
Published online 2010 October 9. doi:  10.1107/S1600536810039115
PMCID: PMC3009233

Tetra­aqua­bis­(1,10-phenanthroline-κ2 N,N′)strontium 5,5′-diazene­diyl­ditetra­zolide

Abstract

The title complex, [Sr(C12H8N2)2(H2O)4](C2N10), contains an [Sr(phen)2(H2O)4]2+ cation (phen is 1,10-phenanthroline) and a 5,5′-diazenediylditetra­zolide anion (site symmetry 2). The Sr2+ cation (site symmetry 2) is coordinated by four N atoms from two chelating phen and four water mol­ecules. In the crystal structure, the water mol­ecules and the N atoms in the tetra­zolide rings form an extensive range of O—H(...)N hydrogen bonds which link the complex into a two-dimensional structure. An adjacent layer further yields a three-dimensional supramolecular network by offset face-to-face π–π stacking inter­actions of the phen ligands [with centroid–centroid distances of 3.915 (2) and 4.012 (2) Å]. The two bridging N atoms of the anion are equally disordered about the twofold rotation axis.

Related literature

Tetra­zole compounds have been investigated as potential energy materials; see: Singh et al. (2006 [triangle]); Klapötke et al. (2009 [triangle]). In particular, complexes of tetra­zole containing cations such as strontium, barium or copper are components for pyrotechnical mixtures (Hartdegen et al., 2009 [triangle]; Klapötke et al., 2008 [triangle]). Additionally, the 5,5′-azotetra­zole with ten nitro­gen atoms is predicted to be involved in the hydrogen-bonding motif to construct a supra­molecule (Wang et al., 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1375-scheme1.jpg

Experimental

Crystal data

  • [Sr(C12H8N2)2(H2O)4](C2N10)
  • M r = 684.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1375-efi1.jpg
  • a = 17.442 (3) Å
  • b = 10.8974 (17) Å
  • c = 16.189 (3) Å
  • β = 105.178 (2)°
  • V = 2969.8 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.88 mm−1
  • T = 296 K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2002 [triangle]) T min = 0.652, T max = 0.729
  • 7165 measured reflections
  • 2621 independent reflections
  • 2226 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.069
  • S = 1.04
  • 2621 reflections
  • 204 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039115/jh2212sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039115/jh2212Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Foundation of China (grant No. 21003103) and the Research Foundation of Xi’an University of Arts and Science (grant Nos. kyc201026 and kyc201011). The authors thank the Instrumental Analysis Center of Northwest University for data collection on the CCD facility.

supplementary crystallographic information

Comment

The high nitrogen content of tetrazole has led to investigation for their use as potential energy materials (Singh et al., 2006; Klapötke et al., 2009). Especially, complex of tetrazole containing cations like strontium, barium, or copper are sought components for pyrotechnical mixtures, by combination of the ligand and the colorantmetal cation (Hartdegen et al., 2009; Klapötke et al., 2008). Additionally, the 5,5'-azotetrazole with ten nitrogen atoms are predicted to be involved in the hydrogen bonds motif to construct supramolecule (Wang et al., 2009). Herein, we report the crystal structure of the title compound, [Sr(phen)2(H2O)4][AT] (I), where phen = 1,10-phenanthroline and AT = 5,5'-diazenediylditetrazolide. The crystal structure of (I) consists of a discrete [Sr(phen)2(H2O)4]2+ cation and one 5,5'-diazenediylditetrazolide anion. As illustrated in Figure 1, the Sr2+ ion is coordinated by eight atoms with four N atoms from two phen molecules and four O atoms from water molecules, giving to a quadrangular prism structure. The N7 atom in the 5,5'-diazenediylditetrazolide anion is positional disordered and the occupancy of N7 must be set to 0.5 to get rational structure model and thermal displacement parameters. Strong hydrogen bonds between the 5,5'-diazenediylditetrazolide anion and water molecules link neighboring [Sr(phen)2(H2O)4]2+ cations, which giving to a two dimensional supramolecular layer, as shown in the Figure 2. Furthermore, the adjacent layers were form to a three dimensional supramolecular network, by the off-set face to face π-π stacking interactions of the phen molecules, with the centroid distance 3.915 and 4.012 Å.

Experimental

30 ml H2O containing 2.0 mmol (0.6003 g) disodium 5,5'-azotetrazole pentahydrate was mixed with 30 ml e thanol containing 4.0 mmol (0.7929 g) 1,10-phenanthroline. 15 ml H2O containing 2.0 mmol (0.5332 g) SrCl2.6H2O was added to the above mixture. Yellow single crystals were obtained from the mixture solution which was allowed to evaporate at the room temperature for two weeks.

Refinement

The H atoms of C atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å and Å and Uiso(H) = 1.2Ueq(C).The water H atoms were located in difference Fourier maps,with distance restraints of O—H = 0.85±0.02 Å, and then refined with isotropic thermal parameters 1.5 times those of O atoms.

Figures

Fig. 1.
View of (I), A view of structure (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and hydrogen atoms are omitted for clarity. The occupancies of N7, are equal to 0.5 [Symmtry codes: A 2 - x,y,1/2 - ...
Fig. 2.
View of the supramolecular layer structure of (I) formed by the hydrogen bonds. The dashed lines are hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability. The phen molecules are omitted for clarity.

Crystal data

[Sr(C12H8N2)2(H2O)4](C2N10)F(000) = 1392
Mr = 684.21Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.442 (3) ÅCell parameters from 3217 reflections
b = 10.8974 (17) Åθ = 2.2–26.9°
c = 16.189 (3) ŵ = 1.88 mm1
β = 105.178 (2)°T = 296 K
V = 2969.8 (8) Å3Block, yellow
Z = 40.25 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer2621 independent reflections
Radiation source: fine-focus sealed tube2226 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2002)h = −20→20
Tmin = 0.652, Tmax = 0.729k = −12→11
7165 measured reflectionsl = −19→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.069w = 1/[σ2(Fo2) + (0.0334P)2 + 1.6965P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2621 reflectionsΔρmax = 0.31 e Å3
204 parametersΔρmin = −0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sr11.00000.24389 (2)0.25000.02718 (12)
N10.85008 (10)0.34918 (17)0.18410 (12)0.0395 (4)
N20.85933 (10)0.10403 (17)0.21752 (11)0.0372 (4)
N30.96163 (12)0.64644 (18)0.09038 (13)0.0483 (5)
N40.94140 (12)0.68916 (18)0.01083 (12)0.0443 (5)
N50.93980 (13)0.80929 (19)0.01267 (13)0.0499 (5)
N60.95898 (14)0.8474 (2)0.09331 (15)0.0580 (6)
C10.84222 (15)0.4689 (2)0.17143 (17)0.0515 (6)
H10.88390.51920.19980.062*
C20.77523 (17)0.5244 (3)0.11807 (19)0.0643 (8)
H20.77290.60910.11100.077*
C30.71337 (16)0.4521 (3)0.07654 (18)0.0640 (8)
H30.66850.48720.04010.077*
C40.71751 (14)0.3253 (3)0.08878 (15)0.0477 (6)
C50.65475 (15)0.2429 (3)0.04826 (18)0.0628 (8)
H50.60940.27410.01020.075*
C60.65995 (15)0.1226 (3)0.06392 (17)0.0609 (8)
H60.61830.07160.03650.073*
C70.72830 (13)0.0706 (2)0.12204 (15)0.0461 (6)
C80.73506 (15)−0.0545 (2)0.14216 (17)0.0551 (7)
H80.6943−0.10820.11650.066*
C90.80122 (15)−0.0976 (2)0.19914 (17)0.0534 (7)
H90.8061−0.18020.21390.064*
C100.86160 (14)−0.0145 (2)0.23494 (16)0.0457 (6)
H100.9067−0.04480.27390.055*
C110.78741 (12)0.2779 (2)0.14439 (14)0.0374 (5)
C120.79253 (12)0.1478 (2)0.16157 (13)0.0356 (5)
C130.97136 (14)0.7456 (2)0.13849 (15)0.0476 (6)
O11.01607 (10)0.39982 (14)0.13806 (9)0.0463 (4)
O20.98909 (9)0.10539 (13)0.11891 (9)0.0422 (4)
H1A1.03060.38550.09280.063*
H2B1.01960.11650.08630.063*
H2A0.97650.02990.11320.063*
H1B0.99600.47080.12530.063*
N70.9905 (2)0.7903 (3)0.2248 (2)0.0372 (9)*0.50
N7'0.9955 (3)0.6972 (3)0.2281 (2)0.0402 (10)*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sr10.02894 (17)0.02498 (17)0.02556 (16)0.0000.00346 (10)0.000
N10.0351 (10)0.0383 (11)0.0444 (11)0.0036 (8)0.0091 (8)0.0031 (8)
N20.0303 (9)0.0381 (11)0.0410 (10)−0.0018 (8)0.0055 (8)−0.0004 (8)
N30.0600 (13)0.0401 (12)0.0475 (12)0.0021 (10)0.0188 (10)0.0097 (10)
N40.0579 (13)0.0402 (12)0.0357 (11)−0.0054 (10)0.0137 (9)−0.0052 (9)
N50.0661 (14)0.0409 (12)0.0468 (13)0.0056 (10)0.0219 (11)0.0081 (10)
N60.0777 (16)0.0429 (13)0.0628 (15)−0.0153 (11)0.0351 (12)−0.0181 (11)
C10.0492 (14)0.0412 (15)0.0646 (17)0.0034 (12)0.0158 (13)0.0056 (12)
C20.0677 (19)0.0477 (16)0.080 (2)0.0209 (15)0.0230 (16)0.0199 (15)
C30.0494 (16)0.076 (2)0.0629 (18)0.0234 (15)0.0091 (14)0.0244 (15)
C40.0358 (13)0.0629 (17)0.0431 (14)0.0105 (12)0.0079 (11)0.0109 (12)
C50.0306 (13)0.100 (3)0.0496 (16)0.0040 (15)−0.0043 (11)0.0083 (15)
C60.0347 (14)0.085 (2)0.0545 (16)−0.0105 (14)−0.0030 (12)−0.0043 (15)
C70.0343 (12)0.0602 (16)0.0429 (14)−0.0072 (11)0.0084 (10)−0.0061 (12)
C80.0468 (15)0.0569 (17)0.0618 (17)−0.0206 (13)0.0145 (13)−0.0149 (13)
C90.0529 (15)0.0402 (14)0.0688 (17)−0.0090 (12)0.0190 (13)−0.0052 (12)
C100.0404 (13)0.0387 (14)0.0560 (15)−0.0007 (10)0.0089 (11)−0.0003 (11)
C110.0276 (11)0.0495 (14)0.0352 (12)0.0036 (10)0.0085 (9)0.0029 (10)
C120.0274 (11)0.0474 (13)0.0321 (11)−0.0010 (10)0.0077 (9)−0.0024 (10)
C130.0404 (13)0.0722 (19)0.0315 (12)−0.0124 (12)0.0114 (10)−0.0074 (13)
O10.0655 (11)0.0362 (9)0.0407 (9)0.0076 (8)0.0203 (8)0.0097 (7)
O20.0585 (10)0.0339 (8)0.0353 (8)−0.0051 (7)0.0142 (7)−0.0054 (6)

Geometric parameters (Å, °)

Sr1—O1i2.5527 (15)C4—C51.435 (4)
Sr1—O12.5527 (15)C5—C61.334 (4)
Sr1—O22.5704 (14)C5—H50.9300
Sr1—O2i2.5704 (14)C6—C71.429 (3)
Sr1—N1i2.7985 (18)C6—H60.9300
Sr1—N12.7985 (18)C7—C81.400 (4)
Sr1—N22.8185 (17)C7—C121.413 (3)
Sr1—N2i2.8185 (17)C8—C91.358 (4)
N1—C11.322 (3)C8—H80.9300
N1—C111.358 (3)C9—C101.394 (3)
N2—C101.321 (3)C9—H90.9300
N2—C121.361 (3)C10—H100.9300
N3—C131.317 (3)C11—C121.442 (3)
N3—N41.327 (3)C13—N71.434 (4)
N4—N51.310 (3)C13—N7'1.496 (4)
N5—N61.327 (3)O1—H1A0.8503
N6—C131.314 (3)O1—H1B0.8520
C1—C21.396 (3)O2—H2B0.8499
C1—H10.9300O2—H2A0.8500
C2—C31.363 (4)N7—N7i0.797 (6)
C2—H20.9300N7—N7'1.018 (5)
C3—C41.395 (4)N7—N7'i1.254 (5)
C3—H30.9300N7'—N7'i0.686 (6)
C4—C111.410 (3)N7'—N7i1.254 (5)
O1i—Sr1—O196.53 (7)C11—C4—C5119.4 (2)
O1i—Sr1—O2168.21 (5)C6—C5—C4121.5 (2)
O1—Sr1—O278.63 (5)C6—C5—H5119.3
O1i—Sr1—O2i78.63 (5)C4—C5—H5119.3
O1—Sr1—O2i168.21 (5)C5—C6—C7121.3 (2)
O2—Sr1—O2i108.08 (7)C5—C6—H6119.4
O1i—Sr1—N1i73.85 (5)C7—C6—H6119.4
O1—Sr1—N1i74.48 (5)C8—C7—C12117.8 (2)
O2—Sr1—N1i114.54 (5)C8—C7—C6123.0 (2)
O2i—Sr1—N1i93.80 (5)C12—C7—C6119.2 (2)
O1i—Sr1—N174.48 (5)C9—C8—C7119.9 (2)
O1—Sr1—N173.85 (5)C9—C8—H8120.0
O2—Sr1—N193.80 (5)C7—C8—H8120.0
O2i—Sr1—N1114.54 (5)C8—C9—C10118.2 (2)
N1i—Sr1—N1131.59 (8)C8—C9—H9120.9
O1i—Sr1—N2103.91 (5)C10—C9—H9120.9
O1—Sr1—N2118.66 (5)N2—C10—C9124.7 (2)
O2—Sr1—N269.86 (5)N2—C10—H10117.7
O2i—Sr1—N273.09 (5)C9—C10—H10117.7
N1i—Sr1—N2166.84 (5)N1—C11—C4123.1 (2)
N1—Sr1—N257.97 (5)N1—C11—C12118.00 (18)
O1i—Sr1—N2i118.66 (5)C4—C11—C12118.9 (2)
O1—Sr1—N2i103.91 (5)N2—C12—C7122.1 (2)
O2—Sr1—N2i73.09 (5)N2—C12—C11118.15 (19)
O2i—Sr1—N2i69.86 (5)C7—C12—C11119.7 (2)
N1i—Sr1—N2i57.97 (5)N6—C13—N3112.7 (2)
N1—Sr1—N2i166.84 (5)N6—C13—N7102.6 (2)
N2—Sr1—N2i114.53 (7)N3—C13—N7144.7 (3)
C1—N1—C11117.0 (2)N6—C13—N7'143.2 (3)
C1—N1—Sr1120.81 (16)N3—C13—N7'104.1 (2)
C11—N1—Sr1120.12 (14)N7—C13—N7'40.60 (19)
C10—N2—C12117.23 (19)Sr1—O1—H1A127.1
C10—N2—Sr1120.88 (14)Sr1—O1—H1B131.5
C12—N2—Sr1119.09 (14)H1A—O1—H1B98.8
C13—N3—N4104.26 (19)Sr1—O2—H2B120.3
N5—N4—N3109.29 (18)Sr1—O2—H2A128.2
N4—N5—N6109.49 (18)H2B—O2—H2A104.9
C13—N6—N5104.26 (19)N7i—N7—N7'86.5 (3)
N1—C1—C2124.0 (2)N7i—N7—N7'i54.1 (2)
N1—C1—H1118.0N7'—N7—N7'i33.1 (3)
C2—C1—H1118.0N7i—N7—C13157.9 (4)
C3—C2—C1118.8 (3)N7'—N7—C1373.0 (3)
C3—C2—H2120.6N7'i—N7—C13106.1 (3)
C1—C2—H2120.6N7'i—N7'—N792.7 (3)
C2—C3—C4119.8 (2)N7'i—N7'—N7i54.2 (2)
C2—C3—H3120.1N7—N7'—N7i39.4 (3)
C4—C3—H3120.1N7'i—N7'—C13159.0 (2)
C3—C4—C11117.2 (2)N7—N7'—C1366.4 (3)
C3—C4—C5123.4 (2)N7i—N7'—C13105.4 (3)
O1i—Sr1—N1—C158.23 (18)C1—N1—C11—C42.7 (3)
O1—Sr1—N1—C1−43.51 (18)Sr1—N1—C11—C4−160.92 (17)
O2—Sr1—N1—C1−120.51 (18)C1—N1—C11—C12−176.1 (2)
O2i—Sr1—N1—C1127.64 (18)Sr1—N1—C11—C1220.3 (3)
N1i—Sr1—N1—C17.47 (17)C3—C4—C11—N1−1.4 (4)
N2—Sr1—N1—C1176.1 (2)C5—C4—C11—N1178.8 (2)
N2i—Sr1—N1—C1−125.5 (3)C3—C4—C11—C12177.3 (2)
O1i—Sr1—N1—C11−138.79 (17)C5—C4—C11—C12−2.4 (3)
O1—Sr1—N1—C11119.47 (17)C10—N2—C12—C7−1.1 (3)
O2—Sr1—N1—C1142.47 (16)Sr1—N2—C12—C7160.13 (16)
O2i—Sr1—N1—C11−69.38 (17)C10—N2—C12—C11177.5 (2)
N1i—Sr1—N1—C11170.45 (17)Sr1—N2—C12—C11−21.3 (2)
N2—Sr1—N1—C11−20.89 (15)C8—C7—C12—N20.0 (3)
N2i—Sr1—N1—C1137.5 (3)C6—C7—C12—N2−180.0 (2)
O1i—Sr1—N2—C10−117.05 (17)C8—C7—C12—C11−178.5 (2)
O1—Sr1—N2—C10137.34 (17)C6—C7—C12—C111.5 (3)
O2—Sr1—N2—C1073.43 (17)N1—C11—C12—N20.9 (3)
O2i—Sr1—N2—C10−43.77 (17)C4—C11—C12—N2−177.9 (2)
N1i—Sr1—N2—C10−38.6 (3)N1—C11—C12—C7179.5 (2)
N1—Sr1—N2—C10−178.36 (19)C4—C11—C12—C70.7 (3)
N2i—Sr1—N2—C1013.94 (16)N5—N6—C13—N30.6 (3)
O1i—Sr1—N2—C1282.42 (15)N5—N6—C13—N7−179.0 (2)
O1—Sr1—N2—C12−23.18 (17)N5—N6—C13—N7'178.2 (4)
O2—Sr1—N2—C12−87.10 (15)N4—N3—C13—N6−0.5 (3)
O2i—Sr1—N2—C12155.71 (16)N4—N3—C13—N7178.8 (4)
N1i—Sr1—N2—C12160.9 (2)N4—N3—C13—N7'−179.1 (2)
N1—Sr1—N2—C1221.11 (14)N6—C13—N7—N7i−154.7 (17)
N2i—Sr1—N2—C12−146.58 (16)N3—C13—N7—N7i26 (2)
C13—N3—N4—N50.3 (3)N7'—C13—N7—N7i22.7 (16)
N3—N4—N5—N60.1 (2)N6—C13—N7—N7'−177.5 (4)
N4—N5—N6—C13−0.4 (3)N3—C13—N7—N7'3.2 (6)
C11—N1—C1—C2−2.2 (4)N6—C13—N7—N7'i−178.9 (3)
Sr1—N1—C1—C2161.3 (2)N3—C13—N7—N7'i1.7 (6)
N1—C1—C2—C30.5 (4)N7'—C13—N7—N7'i−1.4 (5)
C1—C2—C3—C40.8 (4)N7i—N7—N7'—N7'i10.9 (10)
C2—C3—C4—C11−0.4 (4)C13—N7—N7'—N7'i−177.5 (8)
C2—C3—C4—C5179.3 (3)N7'i—N7—N7'—N7i−10.9 (10)
C3—C4—C5—C6−177.7 (3)C13—N7—N7'—N7i171.6 (7)
C11—C4—C5—C62.0 (4)N7i—N7—N7'—C13−171.6 (7)
C4—C5—C6—C70.2 (5)N7'i—N7—N7'—C13177.5 (8)
C5—C6—C7—C8178.0 (3)N6—C13—N7'—N7'i11 (3)
C5—C6—C7—C12−1.9 (4)N3—C13—N7'—N7'i−171 (2)
C12—C7—C8—C91.1 (4)N7—C13—N7'—N7'i7(2)
C6—C7—C8—C9−178.9 (3)N6—C13—N7'—N74.1 (6)
C7—C8—C9—C10−1.2 (4)N3—C13—N7'—N7−178.1 (4)
C12—N2—C10—C91.1 (4)N6—C13—N7'—N7i−1.3 (6)
Sr1—N2—C10—C9−159.8 (2)N3—C13—N7'—N7i176.4 (3)
C8—C9—C10—N20.0 (4)N7—C13—N7'—N7i−5.5 (4)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2B···N5ii0.852.082.885 (3)158
O1—H1A···N4ii0.852.042.870 (2)167
O2—H2A···N6iii0.852.032.871 (3)173
O1—H1B···N30.852.042.887 (3)172

Symmetry codes: (ii) −x+2, −y+1, −z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2212).

References

  • Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Inorg. Chem.48, 9549–9556. [PubMed]
  • Klapötke, T. M., Sabate, C. M. & Stierstorfer, J. (2008). Z. Anorg. Allg. Chem.634, 1867–1874.
  • Klapötke, T. M., Sabate, C. M. & Welch, J. M. (2009). Eur. J. Inorg. Chem.2009, 769–776.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed.45, 3584–3601. [PubMed]
  • Wang, W. T., Chen, S. P., Fan, G., Xie, G., Jiao, B. & Gao, S. (2009). J. Coord. Chem.62, 1879–1886.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography