PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1387.
Published online 2010 October 13. doi:  10.1107/S1600536810039553
PMCID: PMC3009229

Bis(1H-pyrazole-κN 2)bis­(2,4,6-tri­isopropyl­benzoato-κO)cobalt(II)

Abstract

The title compound, [Co(C16H23O2)2(C3H4N2)2] or (C3H4N2)2Co(O2CC6H2 iPr3-2,4,6), is a rare example of a tetra­coordinate cobalt(II) carboxyl­ate stabilized by ancillary N-heterocyclic ligands. The Co(II) ion resides on a crystallographic twofold axis so that the asymmetric unit comprises one half-mol­ecule. Due to the steric bulk of the 2,4,6-triisopropyl­phenyl substituents, the carboxyl­ate ligands are both coordinated in a monodentate fashion despite the low coordination number. The coordination geometry around the central Co(II) ion is distorted tetra­hedral with angles at Co ranging from 92.27 (18)° to 121.08 (14)°.

Related literature

For cobalt(II) carboxyl­ate complexes containing N-coordin­ated heterocyclic ligands, see: Manhas et al. (1975 [triangle]); Catterick & Thornton (1976 [triangle]); Kumar & Gandotra (1980a [triangle],b [triangle]); Kumar & Bajju (1999 [triangle]); Ju et al. (2006 [triangle]); Karmakar et al. (2007 [triangle]). Normally the carboxyl­ate anions are either bidentate or bridging. For an exception in which the benzoate ligands are coordinated in a monodentate fashion, see: Hökelek & Necefouğlu (1999 [triangle]). Inter­esting supra­molecular structures have also been reported, see: Boldog et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1387-scheme1.jpg

Experimental

Crystal data

  • [Co(C16H23O2)2(C3H4N2)2]
  • M r = 689.78
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1387-efi1.jpg
  • a = 9.6146 (19) Å
  • b = 12.792 (3) Å
  • c = 31.275 (6) Å
  • V = 3846.5 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 153 K
  • 0.80 × 0.50 × 0.10 mm

Data collection

  • Stoe STADI4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.696, T max = 0.953
  • 6256 measured reflections
  • 3378 independent reflections
  • 2073 reflections with I > 2σ(I)
  • R int = 0.071
  • 3 standard reflections every 120 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.173
  • S = 1.09
  • 3378 reflections
  • 213 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: DIF4 (Stoe & Cie, 1992 [triangle]); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810039553/fj2344sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039553/fj2344Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Otto-von-Guericke-Universität for financial support of this work.

supplementary crystallographic information

Comment

Cobalt(II) carboxylate complexes containing N-coordinated heterocyclic ligands have been the subject of detailed structural investigations in the past [Manhas et al. (1975); Catterick et al. (1976); Kumar et al. (1980a,b, 1999); Ju et al. (2006); Karmakar et al. (2007)]. The most frequently employed co-ligands are pyridine derivatives. Normally the carboxylate anions are either bidentate or bridging. A notable exception is the octahedral complex trans-diaqua-bis(benzoato-O)-bis(nicotinamide-N1)cobalt(II), in which the benzoate ligands are coordinated in a monodentate fashion [Hökelek et al. (1999)]. Interesting supramolecular structures have have also been reported in this chemistry [Boldog et al. (2001)]. These compounds contained the heterocyclic co-ligand 3,3',5,5'-tetramethyl-4,4'-bipyrazolyl. The title compound, which contains unsubstituted pyrazole as co-ligand, was obtained in small amounts from a reaction of cobalt(II) hydroxide with 2,4,6-triisopropylbenzoic acid in aqueous solution in the presence of pyrazole. The coordination geometry around the central cobalt atom is distorted tetrahedral. Due to the steric bulk of the 2,4,6-triisopropylphenyl substituents the carboxylate ligands in the title compound are monodentate despite the low coordination number of 4 around Co.

Experimental

Small amounts of blue single crystals of the title compound were obtained from a reaction of cobalt(II) hydroxide with 2,4,6-triisopropylbenzoic acid in aqueous solution in the presence of pyrazole.

Refinement

The hydrogen atoms were included using a riding model, with N2—H2 = 0.88 Å, aromatic C—H = 0.95 Å, methyn C—H = 1.00 Å [Uiso(H) = 1.2Ueq(C)] and methyl C—H = 0.98 Å [Uiso(H) = 1.5Ueq(C)].

Figures

Fig. 1.
The molecule of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels.

Crystal data

[Co(C16H23O2)2(C3H4N2)2]F(000) = 1476
Mr = 689.78Dx = 1.191 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 25 reflections
a = 9.6146 (19) Åθ = 15–25°
b = 12.792 (3) ŵ = 0.49 mm1
c = 31.275 (6) ÅT = 153 K
V = 3846.5 (13) Å3Platelet, violet
Z = 40.80 × 0.50 × 0.10 mm

Data collection

Stoe STADI4 diffractometer2073 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
graphiteθmax = 25.0°, θmin = 2.5°
ω–θ–scansh = −11→11
Absorption correction: ψ scan (North et al., 1968)k = −15→0
Tmin = 0.696, Tmax = 0.953l = −37→0
6256 measured reflections3 standard reflections every 120 min
3378 independent reflections intensity decay: 3%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0566P)2 + 5.530P] where P = (Fo2 + 2Fc2)/3
3378 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.38310 (6)0.25000.0350 (3)
O10.0464 (3)0.4910 (2)0.20630 (10)0.0408 (8)
O20.0446 (4)0.3536 (2)0.16381 (11)0.0516 (9)
N10.1650 (4)0.2895 (3)0.25715 (12)0.0407 (9)
N20.2189 (6)0.2259 (4)0.22795 (17)0.0756 (15)
H20.19400.22650.20090.091*
C10.1346 (5)0.5130 (4)0.13559 (15)0.0406 (11)
C20.2789 (5)0.5234 (4)0.13413 (17)0.0514 (13)
C30.3346 (6)0.5847 (5)0.1010 (2)0.0731 (18)
H30.43230.59550.09990.088*
C40.2509 (7)0.6304 (5)0.0697 (2)0.0778 (19)
C50.1112 (7)0.6181 (5)0.07273 (19)0.0701 (17)
H50.05370.65060.05190.084*
C60.0485 (5)0.5603 (4)0.10495 (16)0.0501 (13)
C70.3722 (6)0.4637 (5)0.16474 (19)0.0630 (16)
H7A0.31700.44850.19110.076*
C80.4125 (7)0.3596 (5)0.1447 (2)0.090 (2)
H8A0.32820.32140.13650.135*
H8B0.46560.31820.16540.135*
H8C0.46960.37220.11930.135*
C90.5041 (7)0.5219 (6)0.1784 (3)0.099 (2)
H9A0.47850.58840.19180.149*
H9B0.56220.53540.15320.149*
H9C0.55610.47910.19890.149*
C100.3147 (9)0.6955 (6)0.0337 (3)0.113 (3)
H10A0.23870.69350.01190.135*
C110.4247 (10)0.6439 (8)0.0113 (3)0.143 (4)
H11A0.45810.6889−0.01190.214*
H11B0.39010.5780−0.00070.214*
H11C0.50130.62930.03110.214*
C120.3206 (11)0.8054 (6)0.0431 (2)0.134 (4)
H12A0.35900.84290.01850.200*
H12B0.38000.81700.06810.200*
H12C0.22660.83130.04910.200*
C13−0.1072 (6)0.5466 (4)0.10610 (17)0.0563 (14)
H13A−0.13300.52610.13590.068*
C14−0.1865 (6)0.6474 (5)0.0955 (2)0.079 (2)
H14A−0.15700.70320.11500.118*
H14B−0.28660.63530.09880.118*
H14C−0.16660.66800.06590.118*
C15−0.1521 (8)0.4578 (6)0.0765 (2)0.106 (3)
H15A−0.10090.39410.08390.160*
H15B−0.13200.47690.04680.160*
H15C−0.25210.44550.07980.160*
C160.2320 (6)0.2617 (4)0.29427 (18)0.0594 (15)
H160.21760.29210.32160.071*
C170.3225 (6)0.1830 (4)0.2852 (2)0.0651 (17)
H170.38200.14890.30500.078*
C180.3129 (4)0.1623 (3)0.24355 (14)0.0316 (10)
H180.36420.11130.22810.038*
C190.0713 (5)0.4460 (4)0.16973 (15)0.0375 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0309 (4)0.0278 (4)0.0463 (5)0.0000.0002 (4)0.000
O10.0410 (18)0.0424 (18)0.0391 (18)0.0000 (14)0.0033 (15)0.0010 (15)
O20.060 (2)0.0385 (19)0.057 (2)−0.0102 (16)0.0027 (17)−0.0018 (16)
N10.040 (2)0.0349 (19)0.048 (3)0.0090 (17)−0.0004 (19)−0.0039 (19)
N20.079 (4)0.069 (3)0.079 (4)−0.004 (3)0.001 (3)−0.002 (3)
C10.044 (3)0.039 (3)0.038 (3)0.000 (2)0.008 (2)0.002 (2)
C20.044 (3)0.052 (3)0.059 (3)0.003 (2)0.014 (3)0.004 (3)
C30.055 (4)0.070 (4)0.095 (5)−0.005 (3)0.033 (4)0.012 (4)
C40.079 (4)0.065 (4)0.090 (5)0.014 (3)0.038 (4)0.032 (4)
C50.071 (4)0.077 (4)0.063 (4)0.021 (3)0.020 (3)0.030 (3)
C60.058 (3)0.048 (3)0.045 (3)0.003 (3)0.006 (3)0.010 (3)
C70.042 (3)0.079 (4)0.068 (4)−0.001 (3)0.002 (3)0.006 (3)
C80.081 (5)0.082 (5)0.107 (6)0.023 (4)−0.008 (4)0.011 (4)
C90.049 (3)0.116 (6)0.133 (7)−0.003 (4)−0.013 (4)−0.012 (5)
C100.113 (6)0.087 (6)0.138 (7)0.013 (5)0.071 (6)0.051 (5)
C110.138 (8)0.177 (10)0.113 (7)0.020 (7)0.069 (6)0.060 (7)
C120.221 (11)0.100 (6)0.079 (5)−0.080 (7)0.038 (6)0.004 (5)
C130.052 (3)0.069 (4)0.048 (3)0.002 (3)0.000 (3)0.008 (3)
C140.054 (4)0.099 (5)0.084 (5)0.023 (4)0.002 (3)0.025 (4)
C150.076 (5)0.121 (7)0.122 (7)−0.009 (5)−0.014 (5)−0.031 (5)
C160.054 (3)0.069 (4)0.055 (3)0.024 (3)−0.008 (3)−0.007 (3)
C170.046 (3)0.062 (4)0.088 (5)0.026 (3)−0.006 (3)0.017 (3)
C180.034 (2)0.0270 (19)0.034 (3)0.0153 (18)0.002 (2)0.0022 (19)
C190.032 (2)0.045 (3)0.036 (3)0.000 (2)−0.004 (2)0.001 (2)

Geometric parameters (Å, °)

Co1—O1i1.993 (3)C8—H8C0.9800
Co1—O11.993 (3)C9—H9A0.9800
Co1—N12.000 (4)C9—H9B0.9800
Co1—N1i2.000 (4)C9—H9C0.9800
O1—C191.303 (5)C10—C111.431 (10)
O2—C191.223 (5)C10—C121.437 (10)
N1—N21.328 (6)C10—H10A1.0000
N1—C161.375 (6)C11—H11A0.9800
N2—C181.310 (6)C11—H11B0.9800
N2—H20.8800C11—H11C0.9800
C1—C21.394 (7)C12—H12A0.9800
C1—C61.403 (7)C12—H12B0.9800
C1—C191.499 (6)C12—H12C0.9800
C2—C31.404 (7)C13—C151.527 (8)
C2—C71.518 (7)C13—C141.534 (8)
C3—C41.397 (9)C13—H13A1.0000
C3—H30.9500C14—H14A0.9800
C4—C51.355 (9)C14—H14B0.9800
C4—C101.529 (8)C14—H14C0.9800
C5—C61.388 (7)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C131.507 (8)C15—H15C0.9800
C7—C81.522 (8)C16—C171.360 (7)
C7—C91.531 (8)C16—H160.9500
C7—H7A1.0000C17—C181.331 (7)
C8—H8A0.9800C17—H170.9500
C8—H8B0.9800C18—H180.9500
O1i—Co1—O192.32 (18)C11—C10—C12121.6 (8)
O1i—Co1—N1121.02 (14)C11—C10—C4113.9 (6)
O1—Co1—N1108.28 (14)C12—C10—C4113.5 (7)
O1i—Co1—N1i108.28 (14)C11—C10—H10A101.2
O1—Co1—N1i121.02 (14)C12—C10—H10A101.2
N1—Co1—N1i106.5 (2)C4—C10—H10A101.2
C19—O1—Co1109.7 (3)C10—C11—H11A109.5
N2—N1—C16103.8 (4)C10—C11—H11B109.5
N2—N1—Co1126.8 (3)H11A—C11—H11B109.5
C16—N1—Co1128.4 (3)C10—C11—H11C109.5
C18—N2—N1113.2 (5)H11A—C11—H11C109.5
C18—N2—H2123.4H11B—C11—H11C109.5
N1—N2—H2123.4C10—C12—H12A109.5
C2—C1—C6121.6 (5)C10—C12—H12B109.5
C2—C1—C19118.8 (4)H12A—C12—H12B109.5
C6—C1—C19119.5 (4)C10—C12—H12C109.5
C1—C2—C3117.2 (5)H12A—C12—H12C109.5
C1—C2—C7121.3 (5)H12B—C12—H12C109.5
C3—C2—C7121.4 (5)C6—C13—C15110.6 (5)
C4—C3—C2122.1 (6)C6—C13—C14113.0 (5)
C4—C3—H3118.9C15—C13—C14110.7 (5)
C2—C3—H3118.9C6—C13—H13A107.4
C5—C4—C3118.2 (5)C15—C13—H13A107.4
C5—C4—C10120.9 (7)C14—C13—H13A107.4
C3—C4—C10120.9 (7)C13—C14—H14A109.5
C4—C5—C6122.9 (6)C13—C14—H14B109.5
C4—C5—H5118.5H14A—C14—H14B109.5
C6—C5—H5118.5C13—C14—H14C109.5
C5—C6—C1117.9 (5)H14A—C14—H14C109.5
C5—C6—C13120.7 (5)H14B—C14—H14C109.5
C1—C6—C13121.3 (5)C13—C15—H15A109.5
C2—C7—C8109.3 (5)C13—C15—H15B109.5
C2—C7—C9114.9 (5)H15A—C15—H15B109.5
C8—C7—C9109.2 (5)C13—C15—H15C109.5
C2—C7—H7A107.7H15A—C15—H15C109.5
C8—C7—H7A107.7H15B—C15—H15C109.5
C9—C7—H7A107.7C17—C16—N1108.3 (5)
C7—C8—H8A109.5C17—C16—H16125.8
C7—C8—H8B109.5N1—C16—H16125.8
H8A—C8—H8B109.5C18—C17—C16107.9 (5)
C7—C8—H8C109.5C18—C17—H17126.0
H8A—C8—H8C109.5C16—C17—H17126.0
H8B—C8—H8C109.5N2—C18—C17106.8 (4)
C7—C9—H9A109.5N2—C18—H18126.6
C7—C9—H9B109.5C17—C18—H18126.6
H9A—C9—H9B109.5O2—C19—O1121.5 (4)
C7—C9—H9C109.5O2—C19—C1122.0 (4)
H9A—C9—H9C109.5O1—C19—C1116.5 (4)
H9B—C9—H9C109.5
O1i—Co1—O1—C19−174.0 (3)C2—C1—C6—C13178.5 (5)
N1—Co1—O1—C1962.1 (3)C19—C1—C6—C131.2 (8)
N1i—Co1—O1—C19−61.0 (3)C1—C2—C7—C890.8 (7)
O1i—Co1—N1—N2−169.3 (4)C3—C2—C7—C8−84.0 (7)
O1—Co1—N1—N2−64.9 (4)C1—C2—C7—C9−146.0 (6)
N1i—Co1—N1—N266.7 (4)C3—C2—C7—C939.2 (8)
O1i—Co1—N1—C1623.7 (5)C5—C4—C10—C11−130.1 (9)
O1—Co1—N1—C16128.1 (4)C3—C4—C10—C1151.9 (11)
N1i—Co1—N1—C16−100.4 (5)C5—C4—C10—C1285.1 (11)
C16—N1—N2—C18−0.3 (6)C3—C4—C10—C12−92.8 (10)
Co1—N1—N2—C18−169.9 (3)C5—C6—C13—C1582.9 (7)
C6—C1—C2—C31.0 (8)C1—C6—C13—C15−95.5 (6)
C19—C1—C2—C3178.4 (5)C5—C6—C13—C14−41.9 (8)
C6—C1—C2—C7−174.0 (5)C1—C6—C13—C14139.7 (5)
C19—C1—C2—C73.4 (8)N2—N1—C16—C170.1 (6)
C1—C2—C3—C4−2.5 (9)Co1—N1—C16—C17169.4 (4)
C7—C2—C3—C4172.5 (6)N1—C16—C17—C180.2 (7)
C2—C3—C4—C52.8 (10)N1—N2—C18—C170.4 (6)
C2—C3—C4—C10−179.2 (6)C16—C17—C18—N2−0.4 (6)
C3—C4—C5—C6−1.6 (11)Co1—O1—C19—O211.3 (5)
C10—C4—C5—C6−179.6 (6)Co1—O1—C19—C1−168.4 (3)
C4—C5—C6—C10.2 (9)C2—C1—C19—O2−93.1 (6)
C4—C5—C6—C13−178.2 (6)C6—C1—C19—O284.3 (6)
C2—C1—C6—C50.1 (8)C2—C1—C19—O186.6 (6)
C19—C1—C6—C5−177.3 (5)C6—C1—C19—O1−95.9 (5)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2344).

References

  • Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Dalton Trans. pp. 893–897.
  • Catterick, J. & Thornton, P. (1976). J. Chem. Soc. Dalton Trans. pp. 1634–1640.
  • Hökelek, T. & Necefouğlu, H. (1999). Acta Cryst. C55, 545–547.
  • Ju, W.-Z., Jiao, R.-H., Cao, P. & Fang, R.-Q. (2006). Acta Cryst. E62, m1012–m1013.
  • Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). Polyhedron, 26, 1347–1355.
  • Kumar, N. & Bajju, G. D. (1999). Indian J. Chem. Sect. A.38, 291–294.
  • Kumar, N. & Gandotra, A. K. (1980a). J. Inorg. Nucl. Chem.42, 1247–1252.
  • Kumar, N. & Gandotra, A. K. (1980b). Transition Met. Chem.5, 365–367.
  • Manhas, B. S., Jolly, G. S., Kumar, N. & Gandotra, A. K. (1975). J. Chem. Sci.1, 1–12.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (1992). DIF4 and REDU4 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography