PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1368.
Published online 2010 October 9. doi:  10.1107/S1600536810039644
PMCID: PMC3009226

Chlorido(η 4-cyclo­octa-1,5-diene)(N,N′-diethyl­thio­urea-κS)rhodium(I)

Abstract

In the title rhodium(I) complex, [RhCl(C8H12)(C5H12N2S)], N,N′-diethyl­thio­urea acts as a monodenate S-donor ligand. The rhodium(I) coordination sphere is completed by the Cl atom and the COD [= 1,5-cyclo­octa­diene] ligand inter­acting through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account, the Rh atom exhibits a distorted square-planar coordination. The syn conformation of the N,N′-diethyl­thio­urea ligand with respect to the Cl atom is stabilized by an intra­molecular N—H(...)Cl hydrogen bond. A weak inter­molecular N—H(...)Cl inter­action links mol­ecules along the a axis.

Related literature

For coordination modes of thio­urea and thio­urea-based ligands, see: Wilkinson (1987 [triangle]); Gibson et al. (1994 [triangle]); Robinson et al. (2000 [triangle]). For the application of thio­ureas as ligands for metal precursors in asymmetric catalysis, see: Breuzard et al. (2000 [triangle]). For related Rh(I) complexes containing thio­urea ligands, see: Cauzzi et al. (1995 [triangle], 1997 [triangle]). For structural data of the N,N′-diethyl­thio­urea ligand, see: Ramnathan et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1368-scheme1.jpg

Experimental

Crystal data

  • [RhCl(C8H12)(C5H12N2S)]
  • M r = 378.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1368-efi1.jpg
  • a = 7.295 (5) Å
  • b = 8.705 (5) Å
  • c = 12.602 (5) Å
  • α = 101.727 (5)°
  • β = 102.058 (5)°
  • γ = 94.765 (5)°
  • V = 759.7 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.42 mm−1
  • T = 293 K
  • 0.60 × 0.24 × 0.16 mm

Data collection

  • Bruker–Nonius Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.540, T max = 0.710
  • 12830 measured reflections
  • 2656 independent reflections
  • 2585 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016
  • wR(F 2) = 0.042
  • S = 0.97
  • 2656 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DIRAX/LSQ (Duisenberg, 1992 [triangle]); data reduction: EVALCCD (Duisenberg et al., 2003 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039644/ng5033sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039644/ng5033Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the University of Messina and the MIUR (Ministero dell’Istruzione, dell’Universitá e della Ricerca) for financial support.

supplementary crystallographic information

Comment

Thiourea and thiourea-based ligands form complexes with a number of transition metals (Wilkinson, 1987; Gibson et al., 1994; Robinson et al., 2000) and their application as ligands for metal catalyst in styrene hydroformylation has been recently shown (Breuzard et al., 2000).

In order to investigate the coordination chemistry of symmetrically substituted thiourea derivatives as ligands for metal complexes applicable in asymmetric catalysis, the reaction between chloro(η4-1,5-cyclooctadiene)rhodium(I) dimer and N,N'-diethylthiourea has been performed in dichloromethane. The obtained crystals were identified as the title compound by single-crystal X-ray diffraction. Figure 1 shows that in the compound (I) structure the N,N'-diethylthiourea acts as a monodenate S-donor ligand. Therefore the rhodium(I) coordination sphere is completed by a chlorine atom and COD [= 1,5-cyclooctadiene] ligand interacting with the metal center through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account the rhodium atom displays a distorted square planar coordination, as evidenced by the angles at Rh(1) [M(2)—Rh(1)—S(1) 86.4 (8)°, M(1)—Rh(1)—Cl(1) 88.9 (8)°, M(2)—Rh(1)—M(1) 87.8 (1)°, S(1)—Rh(1)—Cl(1) 96.97 (3)°]. In the thiourea moiety the distance S(1)—C(1) [1.732 (2) Å] is slightly longer than that found in the crystallographic structure of the N,N'-diethythiourea [1.707 (3) Å] (Ramnathan et al., 1995). This lengthening of the S—C bond is consistent with the decreasing double bond character due to the coordination at the metal center. Further the C(1)—S(1)—Rh(1) bond angle value [115.00 (8)°] indicates that the thiourea sulfur is bound to rhodium(I) primarily via a lone pair in a non-bonding sp2 sulfur orbital. C(1)—N(1) and C(1)—N(2) bond lengths [1.331 (3)Å and 1.343 (3) Å] are almost equivalent as expected for symmetrically substituted thiourea molecules. The value of Rh—S bond [2.403 (1) Å] is comparable with those found in similar complexes (Cauzzi et al., 1995, 1997). The syn conformation of the substituent on the sulfur with respect to the chlorine atom is stabilized by the intramolecular N(1)—H(1)···Cl(1) hydrogen bonding interaction.

The crystal packing arrangement is stabilized by van der Walls forces and the very weak intermolecular N(2)—H(2)···Cl(1) A hydrogen interaction along the a axis (Fig. 2) between the thioamide N(2) and the Cl(1) A of the neighbor complex molecule generated by applying the crystallographic (x + 1, y, z) symmetry operation.

Experimental

The compound was prepared by reacting [Rh(COD)(µ-Cl)]2 (0.050 g, 0.10 mmol) with the N,N'-diethylthiourea ligand (0.0264 g, 0.2 mmol) in CH2Cl2 solution at room temperature for 30 min. After evaporation of the solvent in vacuo, the residue was dissolved in dichloromethane. Recrystallization from CH2Cl2/hexane gave orange crystals of the complex.

Refinement

Several H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique with C—H = 0.93Å and N—H = 0.86Å for aliphatic and thioamide H atoms, respectively.

Figures

Fig. 1.
ORTEP view of compound (I) showing atomic labeling scheme and displacement ellipsoids at 50% probability for non-H atoms.
Fig. 2.
View of the molecular rows along the a axis generated by N(2)—H(2)···Cl(1) intermolecular interaction.

Crystal data

[RhCl(C8H12)(C5H12N2S)]Z = 2
Mr = 378.76F(000) = 388
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.295 (5) ÅCell parameters from 93 reflections
b = 8.705 (5) Åθ = 5.3–22.3°
c = 12.602 (5) ŵ = 1.42 mm1
α = 101.727 (5)°T = 293 K
β = 102.058 (5)°Plate, orange
γ = 94.765 (5)°0.60 × 0.24 × 0.16 mm
V = 759.7 (7) Å3

Data collection

Bruker–Nonius Kappa APEXII CCD diffractometer2585 reflections with I > 2σ(I)
graphiteRint = 0.015
ω scansθmax = 25°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −8→8
Tmin = 0.540, Tmax = 0.710k = −10→10
12830 measured reflectionsl = −14→14
2656 independent reflections

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.016w = 1/[σ2(Fo2) + (0.0121P)2 + 1.6925P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.01
S = 0.97Δρmax = 0.41 e Å3
2656 reflectionsΔρmin = −0.35 e Å3
165 parameters

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6141 (3)0.3714 (2)0.14001 (16)0.0101 (4)
C20.6911 (3)0.6516 (2)0.13529 (18)0.0130 (4)
H2A0.6780.62720.05520.016*
H2B0.82450.66310.17080.016*
C30.6120 (3)0.8048 (2)0.17068 (19)0.0156 (4)
H3A0.67010.88670.1430.023*
H3B0.63810.83480.25050.023*
H3C0.47780.78990.14090.023*
C40.8012 (3)0.1765 (2)0.05213 (18)0.0137 (4)
H4A0.68780.10210.01720.016*
H4B0.86730.14290.11690.016*
C50.9280 (3)0.1800 (3)−0.02977 (18)0.0170 (5)
H5A0.86970.2283−0.0880.026*
H5B0.94580.0738−0.06140.026*
H5C1.04840.240.00860.026*
C60.1778 (3)0.4127 (3)0.43845 (18)0.0150 (4)
H60.15430.52270.44210.018*
C70.0334 (3)0.3011 (3)0.36521 (18)0.0143 (4)
H7−0.07250.34690.32720.017*
C8−0.0210 (3)0.1390 (3)0.38650 (19)0.0172 (5)
H8A−0.15590.1080.35760.021*
H8B0.00660.14610.46620.021*
C90.0857 (3)0.0111 (3)0.33158 (18)0.0165 (4)
H9A0.1004−0.06890.37520.02*
H9B0.0104−0.03980.25780.02*
C100.2795 (3)0.0767 (2)0.32166 (18)0.0133 (4)
H100.33370.00550.26930.016*
C110.4153 (3)0.1802 (3)0.40867 (18)0.0146 (4)
H110.54630.16790.40520.018*
C120.3872 (3)0.2309 (3)0.52713 (18)0.0189 (5)
H12A0.50850.24480.57970.023*
H12B0.30580.14790.5420.023*
C130.2989 (3)0.3865 (3)0.54479 (18)0.0193 (5)
H13A0.2220.38490.59880.023*
H13B0.39930.47450.57530.023*
N10.5883 (2)0.52268 (19)0.16738 (14)0.0110 (3)
H10.50650.54630.20620.013*
N20.7506 (2)0.3357 (2)0.08595 (14)0.0121 (4)
H20.81340.41230.06990.014*
S10.47935 (7)0.22159 (6)0.17216 (4)0.01184 (11)
Cl10.18218 (7)0.52815 (6)0.21639 (4)0.01583 (11)
Rh10.27945 (2)0.309577 (18)0.295374 (13)0.00866 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0092 (10)0.0124 (10)0.0074 (9)−0.0004 (8)0.0005 (8)0.0020 (8)
C20.0123 (10)0.0113 (10)0.0160 (11)−0.0002 (8)0.0036 (8)0.0049 (8)
C30.0151 (11)0.0120 (10)0.0190 (11)0.0001 (8)0.0026 (9)0.0041 (9)
C40.0173 (11)0.0115 (10)0.0147 (11)0.0053 (8)0.0064 (9)0.0040 (8)
C50.0199 (11)0.0212 (11)0.0150 (11)0.0092 (9)0.0090 (9)0.0078 (9)
C60.0155 (11)0.0165 (11)0.0138 (11)0.0033 (9)0.0081 (9)0.0004 (9)
C70.0115 (10)0.0195 (11)0.0137 (10)0.0037 (8)0.0074 (8)0.0027 (9)
C80.0150 (11)0.0210 (12)0.0159 (11)−0.0029 (9)0.0072 (9)0.0035 (9)
C90.0195 (11)0.0161 (11)0.0148 (11)−0.0030 (9)0.0067 (9)0.0048 (9)
C100.0179 (11)0.0107 (10)0.0148 (10)0.0038 (8)0.0074 (9)0.0062 (8)
C110.0135 (10)0.0186 (11)0.0147 (11)0.0047 (9)0.0038 (8)0.0086 (9)
C120.0196 (11)0.0260 (12)0.0100 (10)0.0004 (9)0.0007 (9)0.0055 (9)
C130.0198 (12)0.0225 (12)0.0127 (11)−0.0033 (9)0.0052 (9)−0.0016 (9)
N10.0119 (9)0.0085 (8)0.0139 (9)0.0010 (7)0.0073 (7)0.0012 (7)
N20.0140 (9)0.0088 (8)0.0160 (9)0.0013 (7)0.0076 (7)0.0046 (7)
S10.0144 (3)0.0085 (2)0.0149 (3)0.00119 (19)0.0084 (2)0.00302 (19)
Cl10.0110 (2)0.0151 (3)0.0245 (3)0.00368 (19)0.0050 (2)0.0100 (2)
Rh10.00837 (9)0.00896 (9)0.00903 (9)0.00087 (6)0.00293 (6)0.00200 (6)

Geometric parameters (Å, °)

C1—N11.331 (3)C7—H70.98
C1—N21.342 (3)C8—C91.543 (3)
C1—S11.732 (2)C8—H8A0.97
C2—N11.469 (3)C8—H8B0.97
C2—C31.518 (3)C9—C101.519 (3)
C2—H2A0.97C9—H9A0.97
C2—H2B0.97C9—H9B0.97
C3—H3A0.96C10—C111.411 (3)
C3—H3B0.96C10—Rh12.120 (2)
C3—H3C0.96C10—H100.98
C4—N21.466 (3)C11—C121.530 (3)
C4—C51.526 (3)C11—Rh12.130 (2)
C4—H4A0.97C11—H110.98
C4—H4B0.97C12—C131.543 (3)
C5—H5A0.96C12—H12A0.97
C5—H5B0.96C12—H12B0.97
C5—H5C0.96C13—H13A0.97
C6—C71.401 (3)C13—H13B0.97
C6—C131.514 (3)N1—H10.86
C6—Rh12.149 (2)N2—H20.86
C6—H60.98S1—Rh12.4026 (10)
C7—C81.525 (3)Cl1—Rh12.4111 (11)
C7—Rh12.160 (2)
N1—C1—N2118.06 (18)C8—C9—H9B109
N1—C1—S1122.42 (16)H9A—C9—H9B107.8
N2—C1—S1119.52 (16)C11—C10—C9124.75 (19)
N1—C2—C3109.49 (17)C11—C10—Rh171.01 (12)
N1—C2—H2A109.8C9—C10—Rh1110.88 (14)
C3—C2—H2A109.8C11—C10—H10114.1
N1—C2—H2B109.8C9—C10—H10114.1
C3—C2—H2B109.8Rh1—C10—H10114.1
H2A—C2—H2B108.2C10—C11—C12123.07 (19)
C2—C3—H3A109.5C10—C11—Rh170.20 (12)
C2—C3—H3B109.5C12—C11—Rh1114.30 (15)
H3A—C3—H3B109.5C10—C11—H11114
C2—C3—H3C109.5C12—C11—H11114
H3A—C3—H3C109.5Rh1—C11—H11114
H3B—C3—H3C109.5C11—C12—C13112.13 (18)
N2—C4—C5108.76 (17)C11—C12—H12A109.2
N2—C4—H4A109.9C13—C12—H12A109.2
C5—C4—H4A109.9C11—C12—H12B109.2
N2—C4—H4B109.9C13—C12—H12B109.2
C5—C4—H4B109.9H12A—C12—H12B107.9
H4A—C4—H4B108.3C6—C13—C12112.96 (18)
C4—C5—H5A109.5C6—C13—H13A109
C4—C5—H5B109.5C12—C13—H13A109
H5A—C5—H5B109.5C6—C13—H13B109
C4—C5—H5C109.5C12—C13—H13B109
H5A—C5—H5C109.5H13A—C13—H13B107.8
H5B—C5—H5C109.5C1—N1—C2123.97 (17)
C7—C6—C13124.7 (2)C1—N1—H1118
C7—C6—Rh171.44 (12)C2—N1—H1118
C13—C6—Rh1111.45 (15)C1—N2—C4125.27 (17)
C7—C6—H6113.9C1—N2—H2117.4
C13—C6—H6113.9C4—N2—H2117.4
Rh1—C6—H6113.9C1—S1—Rh1115.00 (8)
C6—C7—C8122.7 (2)C10—Rh1—C1138.78 (8)
C6—C7—Rh170.61 (12)C10—Rh1—C697.75 (8)
C8—C7—Rh1112.66 (14)C11—Rh1—C681.39 (9)
C6—C7—H7114.4C10—Rh1—C782.10 (8)
C8—C7—H7114.4C11—Rh1—C790.31 (9)
Rh1—C7—H7114.4C6—Rh1—C737.95 (8)
C7—C8—C9112.29 (17)C10—Rh1—S183.28 (6)
C7—C8—H8A109.1C11—Rh1—S189.52 (7)
C9—C8—H8A109.1C6—Rh1—S1163.50 (6)
C7—C8—H8B109.1C7—Rh1—S1156.79 (6)
C9—C8—H8B109.1C10—Rh1—Cl1159.79 (6)
H8A—C8—H8B107.9C11—Rh1—Cl1160.89 (6)
C10—C9—C8113.14 (18)C6—Rh1—Cl187.71 (7)
C10—C9—H9A109C7—Rh1—Cl190.67 (6)
C8—C9—H9A109S1—Rh1—Cl196.98 (3)
C10—C9—H9B109
C13—C6—C7—C81.3 (3)C12—C11—Rh1—C10−118.3 (2)
Rh1—C6—C7—C8105.03 (19)C10—C11—Rh1—C6113.96 (14)
C13—C6—C7—Rh1−103.7 (2)C12—C11—Rh1—C6−4.32 (16)
C6—C7—C8—C9−92.6 (2)C10—C11—Rh1—C776.94 (13)
Rh1—C7—C8—C9−11.7 (2)C12—C11—Rh1—C7−41.35 (16)
C7—C8—C9—C1029.4 (3)C10—C11—Rh1—S1−79.85 (12)
C8—C9—C10—C1147.8 (3)C12—C11—Rh1—S1161.87 (15)
C8—C9—C10—Rh1−33.1 (2)C10—C11—Rh1—Cl1169.87 (14)
C9—C10—C11—C124.0 (3)C12—C11—Rh1—Cl151.6 (3)
Rh1—C10—C11—C12106.7 (2)C7—C6—Rh1—C10−66.43 (14)
C9—C10—C11—Rh1−102.7 (2)C13—C6—Rh1—C1054.45 (16)
C10—C11—C12—C13−92.5 (3)C7—C6—Rh1—C11−101.71 (14)
Rh1—C11—C12—C13−11.1 (2)C13—C6—Rh1—C1119.17 (15)
C7—C6—C13—C1250.9 (3)C13—C6—Rh1—C7120.9 (2)
Rh1—C6—C13—C12−30.8 (2)C7—C6—Rh1—S1−158.94 (17)
C11—C12—C13—C627.4 (3)C13—C6—Rh1—S1−38.1 (3)
N2—C1—N1—C24.4 (3)C7—C6—Rh1—Cl194.03 (13)
S1—C1—N1—C2−175.86 (15)C13—C6—Rh1—Cl1−145.09 (15)
C3—C2—N1—C1174.37 (18)C6—C7—Rh1—C10113.53 (14)
N1—C1—N2—C4178.38 (18)C8—C7—Rh1—C10−4.79 (15)
S1—C1—N2—C4−1.3 (3)C6—C7—Rh1—C1175.50 (14)
C5—C4—N2—C1166.75 (19)C8—C7—Rh1—C11−42.81 (16)
N1—C1—S1—Rh1−9.74 (19)C8—C7—Rh1—C6−118.3 (2)
N2—C1—S1—Rh1169.97 (13)C6—C7—Rh1—S1164.99 (12)
C9—C10—Rh1—C11120.9 (2)C8—C7—Rh1—S146.7 (2)
C11—C10—Rh1—C6−65.76 (14)C6—C7—Rh1—Cl1−85.41 (13)
C9—C10—Rh1—C655.16 (16)C8—C7—Rh1—Cl1156.27 (15)
C11—C10—Rh1—C7−100.44 (14)C1—S1—Rh1—C10−160.61 (10)
C9—C10—Rh1—C720.48 (15)C1—S1—Rh1—C11−122.23 (10)
C11—C10—Rh1—S197.64 (13)C1—S1—Rh1—C6−66.0 (2)
C9—C10—Rh1—S1−141.43 (15)C1—S1—Rh1—C7148.12 (16)
C11—C10—Rh1—Cl1−170.40 (13)C1—S1—Rh1—Cl139.75 (8)
C9—C10—Rh1—Cl1−49.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.393.152 (3)148
N2—H2···Cl1i0.862.893.356 (3)116

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5033).

References

  • Breuzard, J. A. J., Tommasino, M. L., Touchard, F., Lemaire, M. & Bonnet, M. C. (2000). J. Mol. Catal. A, 156, 223–232.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Cauzzi, D., Costa, M., Gonsalvi, L., Pellinghelli, M. A., Predieri, G., Tiripicchio, A. & Zanoni, R. (1997). J. Organomet. Chem.541, 377–389.
  • Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem.488, 115–125.
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (1994). J. Chem. Soc. Chem. Commun. pp. 2635–2636.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Ramnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Ramadas, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2446–2450.
  • Robinson, S. D., Sahajpal, A. & Steed, J. W. (2000). Inorg. Chim. Acta, 306, 205–210.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wilkinson, G. (1987). Comprehensive Coordination Chemistry, ch. 16.6, pp. 639–640. Oxford: Pergamon Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography