PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2834.
Published online 2010 October 20. doi:  10.1107/S1600536810028400
PMCID: PMC3009225

5-Hy­droxy-7-phenyl-5-(prop-2-yn-1-yl)-5,6-dihydro-1-benzofuran-2(4H)-one monohydrate

Abstract

In the title compound, C17H14O3·H2O, the six-membered ring, which adopts a half-chair conformation, makes a dihedral angle of 24.3 (2)° with the phenyl ring. In the crystal, the components are linked by O—H(...)O hydrogen bonds involving the water mol­ecule, and the hy­droxy and carbonyl groups of the organic compound. These inter­actions form a square-like supra­molecular synthon unit which propagates as chains parallel to the crystallographic b axis. A C—H(...)O interaction also occurs.

Related literature

For related literature about the cited reactions, see: Bassetti et al. (2005 [triangle]); Beck et al. (2001 [triangle]); Liu et al. (2006 [triangle]); Ma & Gu (2005 [triangle]); Rudler et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2834-scheme1.jpg

Experimental

Crystal data

  • C17H14O3·H2O
  • M r = 284.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2834-efi1.jpg
  • a = 9.1585 (2) Å
  • b = 9.2160 (3) Å
  • c = 17.4628 (5) Å
  • β = 91.145 (2)°
  • V = 1473.65 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995 [triangle]) T min = 0.982, T max = 0.983
  • 5821 measured reflections
  • 3360 independent reflections
  • 2251 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.191
  • S = 1.14
  • 3360 reflections
  • 195 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810028400/zq2046sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028400/zq2046Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Spanish Ministerio de Educacion y Ciencia (MAT2006–01997 and ’Factoría de Cristalización’ Consolider Ingenio 2010) and FEDER funding is acknowledged.

supplementary crystallographic information

Comment

2-Butenolides are ubiquitous chemical moieties found in many natural products coming from plants, microorganisms and algae. A range of synthetic approaches to this class of compounds exists and includes among others, palladium-catalyzed cross-coupling reaction between allenoic acids and 2,3-allenols (Ma et al., 2005), gold-catalyzed Z-enynol cyclization (Liu et al., 2006) or ring-closing metathesis of methallyl acrylates (Bassetti et al., 2005). However, only a few multicomponent methods have been reported that include a Passerini reaction (Beck et al., 2001) and Fischer carbene complexes (Rudler et al., 2004) among others. In this context, a new multicomponent method for the synthesis of bicyclic 2-butenolides through the coupling of imide lithium enolates, propargylic organometallics and Fischer carbene complexes will be soon published elsewhere.

The molecular structure of the title compound is shown in Fig. 1. The molecular packing is dominated by three main hydrogen bonds O10—H10···O21, O21—H21A···O10i and O21—H21B···O14ii involving the water molecule, and the hydroxyl and carbonyl groups of the compound. These interactions involving two compounds and two water molecules form a square-like supramolecular synthon unit which propagates as linear chains parallel to the crystallographic b axis.

Experimental

n-Butyllithium (1.2 mmol, 1.6 M in hexane, 750 µL) was added to a stirred solution of diisopropylamine (1.2 mmol, 172 µL) in THF (2 ml) at 273 K. After stirring for 15 min at 273 K, the solution was cooled to 195 K and 3-acetyl-2-oxazolidinone (1.2 mmol, 155 mg) in THF (2 ml) was added dropwise over 5 min. The mixture was stirred at 195 K for a further 30 min period to complete the formation of the lithium enolate. Pentacarbonyl-(1-methoxy-1-phenylmethylene)chromium (1 mmol, 312 mg) in THF (20 ml) was added over the lithium enolate solution at 195 K and the resulting mixture was stirred for 15 min. After that, propargylmagnesium bromide (2.6 mmol, 0.5 M in Et2O, 5.2 ml) was added dropwise at 195 K. The mixture was stirred for 30 min at 195 K and then for 12 h at 218 K. Then it was allowed to reach 293 K slowly (8 h). The reaction was quenched with NH4Cl (20 ml, saturated aqueous solution), diluted with hexane/ethyl acetate, 10/1 (110 ml) and subjected to air oxidation under sunlight. After 24 h, the yellow suspension was filtered through Celite and extracted with diethyl ether (3 x 10 ml). The organic layers were combined, dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel using mixtures of hexane/ethyl acetate (20/1 to 9/1 to 3/1 to 1/1) to yield the title compound (0.68 mmol, 181 mg, 68%) as a pure compound.

Refinement

All non-H atoms were anisotropically refined. All H atoms were placed in geometrically idealized positions with C—H = 0.93 Å for the aromatic H atoms and for the acetylenic H atom, with C—H = 0.97 Å for the methylene H atoms, with O—H = 0.82 Å for the hydroxy H atom, and with O—H = 1.0 Å for the water H atoms. All of them were constrained to ride on their parent atoms with Uiso(H) = 1.2*Ueq(C) and Uiso(H) = 1.5*Ueq(O), except for the water H atoms which were isotropically refined.

Figures

Fig. 1.
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C17H14O3·H2OF(000) = 600
Mr = 284.30Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3327 reflections
a = 9.1585 (2) Åθ = 1.0–27.5°
b = 9.2160 (3) ŵ = 0.09 mm1
c = 17.4628 (5) ÅT = 293 K
β = 91.145 (2)°Prismatic, colourless
V = 1473.65 (7) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer3360 independent reflections
Radiation source: Enraf–Nonius FR5902251 reflections with I > 2σ(I)
horizonally mounted graphite crystalRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.2°
CCD rotation images, thick slices scansh = −11→11
Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995)k = −11→11
Tmin = 0.982, Tmax = 0.983l = −22→22
5821 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.1074P)2] where P = (Fo2 + 2Fc2)/3
3360 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O100.09705 (15)−0.35189 (15)0.55947 (8)0.0309 (4)
H100.0938−0.38900.51680.046*
O210.07886 (17)−0.41878 (17)0.40700 (9)0.0371 (4)
H21A0.0106−0.50290.41270.108 (13)*
H21B0.0326−0.34870.36990.080 (10)*
O10.15674 (17)0.09639 (15)0.59615 (7)0.0299 (4)
O140.0447 (2)0.21621 (17)0.69040 (8)0.0424 (5)
C160.2016 (2)0.0987 (2)0.42937 (12)0.0332 (5)
H160.12810.12880.46170.040*
C50.2133 (2)−0.0433 (2)0.58766 (11)0.0257 (5)
C90.2434 (2)−0.2746 (2)0.66557 (11)0.0283 (5)
H9A0.1778−0.32830.69810.034*
H9B0.3403−0.27740.68890.034*
C110.3067 (2)−0.4999 (2)0.58931 (12)0.0334 (5)
H11A0.2479−0.55660.62390.040*
H11B0.2965−0.54280.53880.040*
C80.2462 (2)−0.3443 (2)0.58623 (11)0.0267 (5)
C20.1017 (3)0.1045 (2)0.66926 (11)0.0319 (5)
C120.4598 (3)−0.5102 (2)0.61430 (12)0.0327 (5)
C40.1930 (2)−0.1211 (2)0.65843 (10)0.0260 (5)
C60.2752 (2)−0.0953 (2)0.52416 (11)0.0244 (5)
C170.2193 (3)0.1677 (3)0.35963 (12)0.0408 (6)
H170.15710.24320.34540.049*
C70.3324 (2)−0.2498 (2)0.53073 (11)0.0281 (5)
H7A0.4338−0.24690.54780.034*
H7B0.3288−0.29450.48040.034*
C150.2936 (2)−0.0165 (2)0.45162 (11)0.0264 (5)
C200.4029 (2)−0.0591 (2)0.40115 (11)0.0325 (5)
H200.4645−0.13570.41430.039*
C30.1265 (2)−0.0318 (2)0.70729 (11)0.0308 (5)
H30.1009−0.05420.75720.037*
C190.4203 (3)0.0118 (3)0.33181 (13)0.0391 (6)
H190.4938−0.01710.29910.047*
C180.3288 (3)0.1249 (3)0.31113 (12)0.0412 (6)
H180.34090.17230.26470.049*
C130.5838 (3)−0.5168 (3)0.63321 (14)0.0429 (6)
H130.6818−0.52210.64810.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O100.0292 (9)0.0298 (8)0.0334 (8)0.0001 (6)−0.0032 (6)−0.0002 (6)
O210.0357 (9)0.0365 (9)0.0391 (9)−0.0021 (7)0.0032 (7)0.0071 (7)
O10.0433 (9)0.0239 (8)0.0228 (7)0.0043 (7)0.0059 (6)−0.0005 (6)
O140.0641 (12)0.0332 (10)0.0302 (8)0.0141 (8)0.0060 (7)−0.0034 (7)
C160.0351 (13)0.0383 (13)0.0263 (11)0.0022 (10)0.0027 (9)0.0027 (9)
C50.0274 (11)0.0224 (11)0.0275 (10)0.0011 (8)0.0006 (8)0.0005 (8)
C90.0311 (12)0.0276 (11)0.0262 (10)0.0018 (9)0.0017 (8)0.0045 (9)
C110.0361 (13)0.0273 (11)0.0367 (12)0.0042 (10)0.0008 (9)0.0006 (9)
C80.0245 (11)0.0258 (11)0.0296 (10)0.0006 (9)−0.0016 (8)0.0017 (8)
C20.0389 (13)0.0326 (12)0.0243 (10)0.0026 (10)0.0024 (9)−0.0039 (9)
C120.0388 (15)0.0298 (12)0.0296 (11)0.0069 (10)0.0045 (9)−0.0020 (9)
C40.0270 (11)0.0273 (11)0.0238 (10)−0.0027 (9)−0.0016 (8)0.0008 (8)
C60.0225 (10)0.0273 (11)0.0235 (10)−0.0015 (8)0.0013 (8)−0.0014 (8)
C170.0456 (15)0.0438 (14)0.0328 (12)0.0013 (12)−0.0017 (10)0.0099 (10)
C70.0296 (12)0.0271 (11)0.0278 (10)0.0013 (9)0.0025 (8)−0.0019 (8)
C150.0279 (12)0.0284 (11)0.0227 (10)−0.0049 (9)−0.0007 (8)−0.0016 (8)
C200.0339 (13)0.0368 (13)0.0269 (11)−0.0016 (10)0.0040 (9)−0.0015 (9)
C30.0362 (13)0.0343 (12)0.0219 (10)0.0019 (10)0.0040 (9)0.0011 (8)
C190.0399 (14)0.0498 (15)0.0281 (11)−0.0069 (11)0.0096 (9)−0.0014 (10)
C180.0477 (15)0.0494 (15)0.0265 (11)−0.0089 (12)0.0006 (10)0.0096 (10)
C130.0374 (15)0.0505 (16)0.0407 (13)0.0106 (12)−0.0011 (11)−0.0062 (11)

Geometric parameters (Å, °)

O10—C81.436 (2)C11—H11B0.9700
O10—H100.8200C8—C71.533 (3)
O21—H21A1.0020C2—C31.437 (3)
O21—H21B1.0021C12—C131.179 (3)
O1—C21.384 (2)C4—C31.341 (3)
O1—C51.397 (2)C6—C151.473 (3)
O14—C21.215 (3)C6—C71.521 (3)
C16—C171.386 (3)C17—C181.383 (4)
C16—C151.405 (3)C17—H170.9300
C16—H160.9300C7—H7A0.9700
C5—C61.344 (3)C7—H7B0.9700
C5—C41.444 (3)C15—C201.403 (3)
C9—C41.492 (3)C20—C191.387 (3)
C9—C81.528 (3)C20—H200.9300
C9—H9A0.9700C3—H30.9300
C9—H9B0.9700C19—C181.381 (3)
C11—C121.463 (3)C19—H190.9300
C11—C81.538 (3)C18—H180.9300
C11—H11A0.9700C13—H130.9300
C8—O10—H10109.5C3—C4—C5107.93 (18)
H21A—O21—H21B107.9C3—C4—C9132.25 (18)
C2—O1—C5106.88 (15)C5—C4—C9119.83 (17)
C17—C16—C15120.6 (2)C5—C6—C15126.24 (19)
C17—C16—H16119.7C5—C6—C7114.96 (17)
C15—C16—H16119.7C15—C6—C7118.79 (16)
C6—C5—O1125.43 (18)C18—C17—C16120.4 (2)
C6—C5—C4126.35 (19)C18—C17—H17119.8
O1—C5—C4108.21 (16)C16—C17—H17119.8
C4—C9—C8109.49 (16)C6—C7—C8113.49 (16)
C4—C9—H9A109.8C6—C7—H7A108.9
C8—C9—H9A109.8C8—C7—H7A108.9
C4—C9—H9B109.8C6—C7—H7B108.9
C8—C9—H9B109.8C8—C7—H7B108.9
H9A—C9—H9B108.2H7A—C7—H7B107.7
C12—C11—C8114.41 (18)C20—C15—C16117.96 (19)
C12—C11—H11A108.7C20—C15—C6119.86 (19)
C8—C11—H11A108.7C16—C15—C6122.15 (19)
C12—C11—H11B108.7C19—C20—C15120.8 (2)
C8—C11—H11B108.7C19—C20—H20119.6
H11A—C11—H11B107.6C15—C20—H20119.6
O10—C8—C9106.40 (16)C4—C3—C2108.20 (18)
O10—C8—C7108.67 (15)C4—C3—H3125.9
C9—C8—C7110.64 (17)C2—C3—H3125.9
O10—C8—C11107.82 (16)C18—C19—C20120.3 (2)
C9—C8—C11111.90 (16)C18—C19—H19119.9
C7—C8—C11111.21 (17)C20—C19—H19119.9
O14—C2—O1119.52 (19)C19—C18—C17119.9 (2)
O14—C2—C3131.7 (2)C19—C18—H18120.0
O1—C2—C3108.78 (17)C17—C18—H18120.0
C13—C12—C11178.7 (2)C12—C13—H13180.0
C2—O1—C5—C6179.1 (2)C5—C6—C7—C830.3 (3)
C2—O1—C5—C4−0.7 (2)C15—C6—C7—C8−150.71 (18)
C4—C9—C8—O10−66.2 (2)O10—C8—C7—C660.3 (2)
C4—C9—C8—C751.7 (2)C9—C8—C7—C6−56.2 (2)
C4—C9—C8—C11176.32 (17)C11—C8—C7—C6178.83 (16)
C12—C11—C8—O10178.87 (16)C17—C16—C15—C20−0.2 (3)
C12—C11—C8—C9−64.5 (2)C17—C16—C15—C6−178.1 (2)
C12—C11—C8—C759.8 (2)C5—C6—C15—C20156.6 (2)
C5—O1—C2—O14−179.3 (2)C7—C6—C15—C20−22.3 (3)
C5—O1—C2—C30.9 (2)C5—C6—C15—C16−25.5 (3)
C6—C5—C4—C3−179.6 (2)C7—C6—C15—C16155.6 (2)
O1—C5—C4—C30.2 (2)C16—C15—C20—C190.7 (3)
C6—C5—C4—C90.0 (3)C6—C15—C20—C19178.67 (19)
O1—C5—C4—C9179.82 (17)C5—C4—C3—C20.3 (2)
C8—C9—C4—C3154.0 (2)C9—C4—C3—C2−179.2 (2)
C8—C9—C4—C5−25.5 (3)O14—C2—C3—C4179.5 (2)
O1—C5—C6—C15−0.8 (3)O1—C2—C3—C4−0.8 (2)
C4—C5—C6—C15179.0 (2)C15—C20—C19—C18−0.6 (3)
O1—C5—C6—C7178.16 (18)C20—C19—C18—C17−0.1 (4)
C4—C5—C6—C7−2.1 (3)C16—C17—C18—C190.7 (4)
C15—C16—C17—C18−0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O10—H10···O210.821.942.735 (2)163
O21—H21A···O10i1.001.742.728 (2)169
O21—H21B···O14ii1.001.752.754 (2)176
C13—H13···O21iii0.932.473.236 (3)139

Symmetry codes: (i) −x, −y−1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2046).

References

  • Bassetti, M., D’Annibale, A., Fanfoni, A. & Minissi, F. (2005). Org. Lett.7, 1805–1808. [PubMed]
  • Beck, B., Magnin-Lachaux, M., Herdtweck, E. & Domling, A. (2001). Org. Lett.3, 2875–2878. [PubMed]
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Liu, Y., Song, F. & Guo, S. (2006). J. Am. Chem. Soc.128, 11332–11333. [PubMed]
  • Ma, S. & Gu, Z. (2005). J. Am. Chem. Soc.127, 6182–6183. [PubMed]
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst.28, 53–56.
  • Rudler, H., Parlier, A., Certal, V., Lastennet, G., Audouin, M. & Vaissermann, J. (2004). Eur. J. Org. Chem. pp. 2471–2502.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography