PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2849.
Published online 2010 October 20. doi:  10.1107/S1600536810041103
PMCID: PMC3009222

1,4-Bis(pyrimidin-2-yl­sulfanyl)­butane

Abstract

The –SCH2CH2CH2CH2S– portion of the title compound, C12H14N2S2, adopts an extended zigzag conformation. The angles at the tetra­hedral carbon atoms are marginally increased [113.63 (12)° and 111.38 (17)° for S—C—C and C—C—C respectively] from the idealized tetra­hedral angle. The mol­ecule lies on an inversion center located at the mid-point of the butyl chain. In the crystal, there is a π–π stacking inter­action between inversion-related pyrimidine rings with mean inter­planar spacing of 3.494 (2) Å.

Related literature

For the structure of a silver perchlorate adduct of the title compound see: Wang & Zheng (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2849-scheme1.jpg

Experimental

Crystal data

  • C12H14N4S2
  • M r = 278.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2849-efi1.jpg
  • a = 5.5025 (1) Å
  • b = 7.6617 (1) Å
  • c = 8.3598 (2) Å
  • α = 86.915 (1)°
  • β = 87.253 (1)°
  • γ = 75.853 (1)°
  • V = 341.03 (1) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 293 K
  • 0.35 × 0.20 × 0.10 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.849, T max = 1.000
  • 5571 measured reflections
  • 1524 independent reflections
  • 1384 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.115
  • S = 1.05
  • 1524 reflections
  • 82 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041103/pk2276sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041103/pk2276Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Higher Education Commission of Pakistan, GC University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The bis(arylthio)alkane ligands are excellent 'flexible' ligands for binding to silver(I) compounds. The title ligand (Scheme I) has been used in the synthesis of a silver perchlorate adduct; the ligand binds through its nitrogen donor sites (Wang & Zheng, 2007). The ligand itself exists as a centrosymmetric compound (Fig. 1) with an inversion center located at the mid-point of the butyl chain. The –SCH2CH2CH2CH2S– portion of the molecule of C12H14N2S2 adopts an extended zigzag conformation, and the angles at the tetrahedral C atoms are marginally increased from the idealized 109.5 ° (113.62 (12)° and 111.38 (17)° for S—C—C and C—C—C respectively).

Experimental

To the ethanol mixture (50 ml) of 2-mercaptopyrimidine (2 g, 17.8 mmol) and sodium bicarbonate (1.8 g, 21.4 mmol) was added 1,4-dichlorobutane (1.13 g, 8.92 mmol). The mixture was heated for 6 h and the progress of the reaction was monitored by TLC (chloroform: ethyl acetate 9:1). The mixture was filtered and the solvent was allowed to evaporate. The colorless crystals that were isolated were collected and washed with hexane; yield 82%.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C12H14N2S2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies about a center-of-inversion.

Crystal data

C12H14N4S2Z = 1
Mr = 278.39F(000) = 146
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5025 (1) ÅCell parameters from 3569 reflections
b = 7.6617 (1) Åθ = 2.4–28.3°
c = 8.3598 (2) ŵ = 0.38 mm1
α = 86.915 (1)°T = 293 K
β = 87.253 (1)°Prism, pale yellow
γ = 75.853 (1)°0.35 × 0.20 × 0.10 mm
V = 341.03 (1) Å3

Data collection

Bruker Kappa APEXII diffractometer1524 independent reflections
Radiation source: fine-focus sealed tube1384 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.7°
[var phi] and ω scansh = −7→7
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −9→9
Tmin = 0.849, Tmax = 1.000l = −10→10
5571 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0684P)2 + 0.0791P] where P = (Fo2 + 2Fc2)/3
1524 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.00757 (8)0.83807 (5)0.36197 (5)0.0497 (2)
N10.2131 (3)0.68013 (19)0.09155 (18)0.0464 (3)
N2−0.2078 (3)0.8589 (2)0.09199 (19)0.0505 (4)
C10.3698 (3)0.5370 (2)0.46719 (19)0.0437 (4)
H1A0.35220.47130.37420.052*
H1B0.24440.51910.54790.052*
C20.3247 (3)0.7362 (2)0.4204 (2)0.0469 (4)
H2A0.43950.75160.33210.056*
H2B0.36220.79890.51030.056*
C30.0099 (3)0.78350 (19)0.16033 (19)0.0396 (3)
C40.1936 (3)0.6518 (3)−0.0632 (2)0.0533 (4)
H40.33050.5800−0.11710.064*
C5−0.0195 (4)0.7241 (3)−0.1458 (2)0.0541 (4)
H5−0.02890.7042−0.25390.065*
C6−0.2187 (3)0.8274 (3)−0.0615 (2)0.0539 (4)
H6−0.36670.8770−0.11400.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0475 (3)0.0499 (3)0.0434 (3)0.00536 (19)−0.00486 (18)−0.00421 (18)
N10.0412 (7)0.0462 (7)0.0472 (8)−0.0017 (6)−0.0016 (6)−0.0023 (6)
N20.0391 (7)0.0549 (8)0.0517 (9)0.0004 (6)−0.0063 (6)−0.0012 (6)
C10.0419 (8)0.0443 (8)0.0420 (8)−0.0037 (6)−0.0078 (7)−0.0004 (6)
C20.0467 (8)0.0440 (8)0.0470 (9)−0.0035 (7)−0.0116 (7)−0.0020 (7)
C30.0384 (7)0.0352 (7)0.0428 (8)−0.0048 (6)−0.0032 (6)0.0013 (6)
C40.0500 (10)0.0566 (10)0.0485 (10)−0.0038 (8)0.0045 (7)−0.0067 (8)
C50.0603 (11)0.0596 (10)0.0419 (9)−0.0130 (8)−0.0047 (8)−0.0021 (7)
C60.0474 (9)0.0605 (10)0.0514 (10)−0.0075 (8)−0.0134 (8)0.0033 (8)

Geometric parameters (Å, °)

S1—C31.7571 (17)C1—H1B0.9700
S1—C21.8076 (16)C2—H2A0.9700
N1—C31.328 (2)C2—H2B0.9700
N1—C41.337 (2)C4—C51.370 (3)
N2—C61.325 (2)C4—H40.9300
N2—C31.337 (2)C5—C61.374 (3)
C1—C21.517 (2)C5—H50.9300
C1—C1i1.524 (3)C6—H60.9300
C1—H1A0.9700
C3—S1—C2103.41 (8)H2A—C2—H2B107.7
C3—N1—C4115.09 (14)N1—C3—N2127.07 (15)
C6—N2—C3115.78 (15)N1—C3—S1120.73 (12)
C2—C1—C1i111.38 (17)N2—C3—S1112.20 (12)
C2—C1—H1A109.4N1—C4—C5122.81 (16)
C1i—C1—H1A109.4N1—C4—H4118.6
C2—C1—H1B109.4C5—C4—H4118.6
C1i—C1—H1B109.4C4—C5—C6116.83 (17)
H1A—C1—H1B108.0C4—C5—H5121.6
C1—C2—S1113.63 (12)C6—C5—H5121.6
C1—C2—H2A108.8N2—C6—C5122.41 (16)
S1—C2—H2A108.8N2—C6—H6118.8
C1—C2—H2B108.8C5—C6—H6118.8
S1—C2—H2B108.8
C1i—C1—C2—S1−173.69 (15)C2—S1—C3—N13.47 (15)
C3—S1—C2—C1−82.52 (14)C2—S1—C3—N2−175.76 (12)
C4—N1—C3—N20.6 (3)C3—N1—C4—C50.2 (3)
C4—N1—C3—S1−178.46 (12)N1—C4—C5—C6−0.8 (3)
C6—N2—C3—N1−0.7 (3)C3—N2—C6—C5−0.1 (3)
C6—N2—C3—S1178.47 (13)C4—C5—C6—N20.8 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2276).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S.-L. & Zheng, Y. (2007). Acta Cryst. E63, m2528.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography