PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2734–o2735.
Published online 2010 October 9. doi:  10.1107/S160053681003922X
PMCID: PMC3009220

1,5-Diphenyl­carbonohydrazide N,N-di­methyl­formamide

Abstract

In the title compound, C13H14N4O·C3H7NO, a 1,5-phenyl­carbonohydrazide mol­ecule cocrystallizes with an N,N-dimethyl­formamide mol­ecule. In the 1,5-phenyl­carbonohydrazide mol­ecule, the two phenyl rings are twisted by an angle of 45.8 (5)°. Inter­molecular N—H(...)O hydrogen bonds and weak inter­molecular C—H(...)O inter­actions contribute to a supra­molecular two-dimensional network in the (101) plane.

Related literature

For literature on the applications of 1,5-diphenyl­carbonohydrazide, an artificial electron-donor material, see: Verma & Singh (1995 [triangle]); Melis et al. (1992 [triangle]); Prasad et al. (1991 [triangle]); Sundari & Raghavendra (1990 [triangle]); Mishra et al. (1993 [triangle]). For the structure of diphenyl­carbonohydrazide, see: De Ranter et al. (1979 [triangle]). For related structures, see: Hamuro et al. (1999 [triangle]); Jian et al. (2003 [triangle]); Wei et al.(2006 [triangle]); Wang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2734-scheme1.jpg

Experimental

Crystal data

  • C13H14N4O·C3H7NO
  • M r = 315.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2734-efi1.jpg
  • a = 5.9774 (2) Å
  • b = 14.8531 (6) Å
  • c = 18.4827 (7) Å
  • β = 96.029 (3)°
  • V = 1631.87 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.21 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.982, T max = 0.984
  • 23310 measured reflections
  • 2902 independent reflections
  • 2061 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.193
  • S = 1.06
  • 2902 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003922X/jj2045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003922X/jj2045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Universities and Colleges Natural Science Foundation of Henan (grant No. 2009 A150011) and the Natural Science Foundation of China (grant No. 200903036).

supplementary crystallographic information

Comment

1, 5-diphenylcarbonohydrazide, an artificial electron-donor material, has a variety of applications (Verma & Singh, 1995; Melis et al., 1992; Prasad et al., 1991; Sundari & Raghavendra, 1990; Mishra et al., 1993). The structure of diphenylcarbonohydrazide (C13H14N4O), (De Ranter et al., 1979) and a number of diphenylcarbonohydrazide derivatives have been prepared (Jian et al., 2003; Wang et al., 2001; Hamuro et al., 1999; Wei et al., 2006).

The title compound, is a co-crystal with a 1,5-phenylcarbonohydrazide molecule and a N, N-dimethylformamide molecule in the unit cell (Fig. 1). In the 1,5-phenylcarbonohydrazide molecule, the dihedral angles of the two benzene rings are twisted by an angle of 45.8 (5)°. The C7/N1/N2/C8 (-91.6 (3)°) and C7/N3/N4/C1 (75.3 (3)°) torsion angles confirm this twist. Crystal packing is dominated by N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) which contribute to a supermolecular 2-D network formed in the 101 plane (Fig. 2).

Experimental

A mixture of 1, 5-diphenylcarbazide (0.0233 g), Cd(NO3)2(0.0132 g), N, N-dimethylformamide (5 ml), and water (12 ml) was stirred at room temperature for 6 h. The solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, the title compound appeared about a month later. The title compound was filtered, washed with water and dried at 298K. The single crystals were grown by slow evaporation of water and N, N-dimethylformamide in the filtered mixture of 1, 5-diphenylcarbazide, Cd(NO3)2, N, N-dimethylformamide, and water at 298K.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 times (NH), 1.2 (CH) or 1.2 (CH3) times Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of the title compound, C16H21N5O2, showing the atom-labeling scheme with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Packing diagram for the title compound viewed down the b axis. Dashed lines indicate N—H···O and C—H···O hydrogen bonds forming an infinite two-dimensional polymeric chain along the a axis. ...

Crystal data

C13H14N4O·C3H7NOF(000) = 672
Mr = 315.38Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3501 reflections
a = 5.9774 (2) Åθ = 2.6–21.5°
b = 14.8531 (6) ŵ = 0.09 mm1
c = 18.4827 (7) ÅT = 296 K
β = 96.029 (3)°Block, colorless
V = 1631.87 (11) Å30.21 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2902 independent reflections
Radiation source: fine-focus sealed tube2061 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi] and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −7→7
Tmin = 0.982, Tmax = 0.984k = −17→17
23310 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.193w = 1/[σ2(Fo2) + (0.1085P)2 + 0.5441P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2902 reflectionsΔρmax = 0.32 e Å3
209 parametersΔρmin = −0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4510 (4)0.55844 (17)0.25962 (14)0.0456 (6)
C20.6356 (5)0.5015 (2)0.26959 (15)0.0573 (8)
H2A0.75630.50970.24230.069*
C30.6407 (5)0.4328 (2)0.31971 (17)0.0633 (8)
H3A0.76450.39460.32560.076*
C40.4651 (5)0.4197 (2)0.36131 (16)0.0639 (8)
H4A0.46890.37280.39470.077*
C50.2840 (5)0.4774 (2)0.35257 (16)0.0608 (8)
H5A0.16580.46980.38090.073*
C60.2757 (4)0.54590 (18)0.30260 (15)0.0509 (7)
H6A0.15210.58420.29740.061*
C70.5425 (4)0.57813 (16)0.09720 (13)0.0401 (6)
C80.8908 (4)0.71277 (16)0.02790 (12)0.0396 (6)
C90.6983 (4)0.74404 (19)−0.01259 (15)0.0518 (7)
H9A0.56770.7095−0.01650.062*
C100.7002 (5)0.8262 (2)−0.04697 (17)0.0646 (8)
H10A0.57060.8467−0.07420.078*
C110.8908 (5)0.8785 (2)−0.04161 (17)0.0665 (9)
H11A0.89070.9339−0.06500.080*
C121.0807 (5)0.8478 (2)−0.00140 (17)0.0637 (8)
H12A1.21040.88280.00230.076*
C131.0828 (4)0.76617 (19)0.03362 (15)0.0506 (7)
H13A1.21290.74660.06120.061*
C140.9098 (5)0.78263 (19)0.25852 (16)0.0550 (7)
H14A0.76160.80000.24530.066*
C150.9162 (6)0.8990 (2)0.34963 (18)0.0675 (9)
H15A1.02210.92360.38710.101*
H15B0.78870.87550.37100.101*
H15C0.86750.94540.31540.101*
C161.2467 (5)0.8018 (2)0.33949 (17)0.0656 (8)
H16A1.30150.84130.37850.098*
H16B1.34230.80600.30100.098*
H16C1.24670.74100.35710.098*
N10.7115 (3)0.57302 (14)0.05309 (11)0.0445 (5)
H1A0.70380.53460.01810.053*
N20.8964 (3)0.63018 (13)0.06480 (11)0.0437 (5)
H2B1.01170.61510.09410.052*
N30.5839 (4)0.63150 (15)0.15609 (11)0.0510 (6)
H3B0.69940.66640.15970.061*
N40.4411 (4)0.63076 (15)0.21120 (12)0.0536 (6)
H4B0.34830.67430.21520.064*
N51.0222 (3)0.82726 (15)0.31247 (11)0.0483 (6)
O10.3662 (3)0.53634 (12)0.08206 (10)0.0491 (5)
O20.9826 (3)0.72042 (14)0.22424 (12)0.0664 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0427 (14)0.0537 (16)0.0404 (14)−0.0021 (11)0.0043 (11)−0.0108 (11)
C20.0430 (15)0.073 (2)0.0570 (17)0.0041 (13)0.0103 (13)−0.0061 (15)
C30.0531 (17)0.076 (2)0.0592 (18)0.0144 (14)−0.0027 (14)0.0009 (15)
C40.0681 (19)0.0691 (19)0.0538 (17)−0.0009 (16)0.0025 (15)0.0077 (15)
C50.0565 (17)0.072 (2)0.0562 (17)−0.0062 (15)0.0179 (14)−0.0011 (15)
C60.0445 (15)0.0541 (16)0.0558 (16)0.0024 (12)0.0129 (12)−0.0057 (13)
C70.0391 (13)0.0404 (13)0.0411 (13)−0.0030 (10)0.0052 (10)0.0033 (10)
C80.0367 (13)0.0462 (14)0.0367 (13)−0.0037 (10)0.0078 (10)−0.0056 (10)
C90.0366 (14)0.0610 (17)0.0564 (16)−0.0053 (12)−0.0023 (12)0.0045 (13)
C100.0560 (18)0.071 (2)0.0651 (19)0.0068 (15)−0.0035 (14)0.0140 (15)
C110.073 (2)0.0569 (18)0.069 (2)−0.0022 (15)0.0072 (16)0.0169 (15)
C120.0573 (18)0.0631 (19)0.071 (2)−0.0181 (14)0.0092 (15)0.0067 (16)
C130.0392 (14)0.0584 (17)0.0536 (16)−0.0074 (12)0.0012 (12)0.0020 (13)
C140.0434 (15)0.0590 (17)0.0609 (17)0.0041 (13)−0.0024 (13)0.0002 (14)
C150.084 (2)0.0539 (17)0.0676 (19)0.0083 (16)0.0240 (17)−0.0042 (15)
C160.0593 (18)0.072 (2)0.0623 (18)0.0048 (15)−0.0112 (15)−0.0066 (15)
N10.0410 (11)0.0466 (12)0.0468 (12)−0.0116 (9)0.0092 (9)−0.0087 (9)
N20.0345 (10)0.0501 (13)0.0453 (12)−0.0064 (9)−0.0018 (9)0.0027 (9)
N30.0486 (13)0.0596 (14)0.0468 (12)−0.0145 (10)0.0146 (10)−0.0109 (10)
N40.0550 (13)0.0573 (14)0.0512 (13)0.0062 (11)0.0181 (11)−0.0043 (11)
N50.0454 (12)0.0487 (13)0.0503 (13)0.0043 (10)0.0024 (10)−0.0043 (10)
O10.0416 (10)0.0540 (11)0.0520 (11)−0.0122 (8)0.0061 (8)−0.0046 (8)
O20.0627 (13)0.0650 (13)0.0687 (13)0.0034 (10)−0.0060 (10)−0.0200 (11)

Geometric parameters (Å, °)

C1—C21.388 (4)C11—C121.368 (4)
C1—C61.392 (3)C11—H11A0.9300
C1—N41.395 (3)C12—C131.374 (4)
C2—C31.376 (4)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.378 (4)C14—O21.226 (3)
C3—H3A0.9300C14—N51.321 (4)
C4—C51.376 (4)C14—H14A0.9300
C4—H4A0.9300C15—N51.449 (3)
C5—C61.371 (4)C15—H15A0.9600
C5—H5A0.9300C15—H15B0.9600
C6—H6A0.9300C15—H15C0.9600
C7—O11.230 (3)C16—N51.433 (4)
C7—N31.348 (3)C16—H16A0.9600
C7—N11.365 (3)C16—H16B0.9600
C8—C131.390 (4)C16—H16C0.9600
C8—C91.385 (4)N1—N21.392 (3)
C8—N21.402 (3)N1—H1A0.8600
C9—C101.377 (4)N2—H2B0.8600
C9—H9A0.9300N3—N41.396 (3)
C10—C111.373 (4)N3—H3B0.8600
C10—H10A0.9300N4—H4B0.8600
C2—C1—C6118.6 (3)C13—C12—H12A119.5
C2—C1—N4122.3 (2)C12—C13—C8120.1 (3)
C6—C1—N4119.0 (2)C12—C13—H13A120.0
C3—C2—C1120.2 (3)C8—C13—H13A120.0
C3—C2—H2A119.9O2—C14—N5126.0 (3)
C1—C2—H2A119.9O2—C14—H14A117.0
C4—C3—C2121.0 (3)N5—C14—H14A117.0
C4—C3—H3A119.5N5—C15—H15A109.5
C2—C3—H3A119.5N5—C15—H15B109.5
C5—C4—C3118.9 (3)H15A—C15—H15B109.5
C5—C4—H4A120.6N5—C15—H15C109.5
C3—C4—H4A120.6H15A—C15—H15C109.5
C6—C5—C4120.9 (3)H15B—C15—H15C109.5
C6—C5—H5A119.6N5—C16—H16A109.5
C4—C5—H5A119.6N5—C16—H16B109.5
C5—C6—C1120.5 (3)H16A—C16—H16B109.5
C5—C6—H6A119.8N5—C16—H16C109.5
C1—C6—H6A119.8H16A—C16—H16C109.5
O1—C7—N3124.1 (2)H16B—C16—H16C109.5
O1—C7—N1120.4 (2)C7—N1—N2119.9 (2)
N3—C7—N1115.5 (2)C7—N1—H1A120.1
C13—C8—C9118.8 (2)N2—N1—H1A120.1
C13—C8—N2119.0 (2)N1—N2—C8118.7 (2)
C9—C8—N2122.2 (2)N1—N2—H2B120.7
C10—C9—C8120.0 (3)C8—N2—H2B120.7
C10—C9—H9A120.0C7—N3—N4120.7 (2)
C8—C9—H9A120.0C7—N3—H3B119.7
C11—C10—C9121.0 (3)N4—N3—H3B119.7
C11—C10—H10A119.5N3—N4—C1119.1 (2)
C9—C10—H10A119.5N3—N4—H4B120.5
C10—C11—C12119.1 (3)C1—N4—H4B120.5
C10—C11—H11A120.5C14—N5—C16120.9 (2)
C12—C11—H11A120.5C14—N5—C15120.9 (2)
C11—C12—C13121.0 (3)C16—N5—C15118.0 (2)
C11—C12—H12A119.5
C6—C1—C2—C31.7 (4)C9—C8—C13—C12−0.9 (4)
N4—C1—C2—C3177.9 (3)N2—C8—C13—C12−179.3 (2)
C1—C2—C3—C4−0.7 (5)O1—C7—N1—N2170.8 (2)
C2—C3—C4—C5−0.7 (5)N3—C7—N1—N2−8.7 (3)
C3—C4—C5—C61.0 (5)C7—N1—N2—C8−91.6 (3)
C4—C5—C6—C10.0 (4)C13—C8—N2—N1−173.7 (2)
C2—C1—C6—C5−1.4 (4)C9—C8—N2—N18.1 (3)
N4—C1—C6—C5−177.7 (3)O1—C7—N3—N411.1 (4)
C13—C8—C9—C100.7 (4)N1—C7—N3—N4−169.4 (2)
N2—C8—C9—C10179.0 (2)C7—N3—N4—C175.3 (3)
C8—C9—C10—C11−0.3 (4)C2—C1—N4—N319.4 (4)
C9—C10—C11—C120.0 (5)C6—C1—N4—N3−164.4 (2)
C10—C11—C12—C13−0.2 (5)O2—C14—N5—C16−3.8 (5)
C11—C12—C13—C80.7 (4)O2—C14—N5—C15−179.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.132.975 (3)166
C6—H6A···O2ii0.932.583.370 (4)143
N2—H2B···O1iii0.862.453.121 (3)135
N3—H3B···O20.862.122.895 (3)149
N4—H4B···O2ii0.862.313.079 (3)148

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2045).

References

  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • De Ranter, C. J., Blaton, N. M. & Peeters, O. M. (1979). Acta Cryst. B35, 1295–1297.
  • Hamuro, Y., Marshall, W. J. & Scialdone, M. A. (1999). J. Comb. Chem.1, 163–172.
  • Jian, F. F., Xiao, H. L. & Wang, Y. (2003). Jiegou Huaxue (Chin. J. Struct. Chem.), 22, 55–59.
  • Melis, A., Nemson, J. A. & Hanison, M. A. (1992). Biochim. Biophys. Acta, 1100, 312–320.
  • Mishra, U., Kashyap, A. K. & Pande, J. (1993). Environ. Technol.14, 373–378.
  • Prasad, S. M., Singh, J. B., Rai, L. C. & Kumar, H. D. (1991). FEMS Microbiol. Lett. 82, 95–100.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sundari, D. S. & Raghavendra, A. S. (1990). Photosynth. Res.23, 95–99.
  • Verma, K. & Singh, D. P. (1995). Curr. Microbiol.30, 373–379.
  • Wang, Y., Jian, F.-F., Yang, X.-J., Lu, L.-D., Wang, X., Fun, H.-K., Chantrapromma, S. & Razak, I. A. (2001). Acta Cryst. E57, o312–o314.
  • Wei, C.-X., Chen, J.-X., Li, Z.-S., Lan, T.-Y. & Huang, Y.-B. (2006). Acta Cryst. E62, o1719–o1721.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography