PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1380–m1381.
Published online 2010 October 9. doi:  10.1107/S1600536810039814
PMCID: PMC3009219

trans-Carbonyl­chloridobis[tris­(4-chloro­phen­yl)phosphane]rhodium(I) acetone monosolvate

Abstract

The title compound, trans-[RhCl(C18H12Cl3P)2(CO)]·C3H6O, contains an Rh(I) atom in a distorted square-planar coordination with a P—Rh—P angle of 175.27 (2)° and Rh—P bond lengths of 2.3127 (4) and 2.3219 (4) Å. The rhodium complexes link each other through weak inter­molecular contacts between the acetone methyl groups and the carbonyl O atom. Inter­actions between the acetone solvent mol­ecule and the Cl—Rh unit results in a reduced P—Rh—Cl angle of 86.675 (15)°.

Related literature

For a review of rhodium Vaska {trans-[RhCl(CO)(PR 3)2]} compounds, see: Roodt et al. (2003 [triangle]). For related compounds, see: Angoletta (1959 [triangle]); Vaska & Di Luzio (1961 [triangle]); Chen et al. (1991 [triangle]); Kuwabara & Bau (1994 [triangle]); Otto et al. (2000 [triangle]); Otto (2001 [triangle]); Meijboom et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1380-scheme1.jpg

Experimental

Crystal data

  • [RhCl(C18H12Cl3P)2(CO)]·C3H6O
  • M r = 955.64
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1380-efi1.jpg
  • a = 10.6130 (7) Å
  • b = 12.7970 (8) Å
  • c = 16.7470 (11) Å
  • α = 71.631 (1)°
  • β = 81.742 (1)°
  • γ = 68.537 (1)°
  • V = 2007.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 100 K
  • 0.37 × 0.17 × 0.07 mm

Data collection

  • Bruker X8 APEXII 4K KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.707, T max = 0.933
  • 25954 measured reflections
  • 10031 independent reflections
  • 9160 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.069
  • S = 1.04
  • 10031 reflections
  • 471 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 1.17 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039814/si2294sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039814/si2294Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ARB thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and the University of Johannesburg is also gratefully acknowledged.

supplementary crystallographic information

Comment

The original Vaska complex, trans-[IrCl(CO)(PPh3)2], was first reported in 1959 (Angoletta, 1959), but later correctly formulated by Vaska in 1961 (Vaska & Di Luzio, 1961). This class of symmetrical square-planar complexes often crystallizes with the metal atom on a crystallographic centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001; Otto et al., 2000; Chen et al., 1991; Kuwabara & Bau, 1994). We report the title compound as one of the few crystallographic examples of this group which does not show disorder along the carbonyl/chloro axis.

Compound (I) crystallizes in a triclinic space group. The crystal structure of trans-[RhCl(CO){P(4-ClC6H4)3}2] (Fig.1) shows the expected square planar geometry with the phosphine ligands trans to each other.

As seen in Fig. 1 and Table 1, the complex shows a non-equally spaced square planar coordination centre with the P—Rh—P angle being 175.27 (2) °. The 1J(Rh—P) coupling of 128 Hz is in agreement with the coupling constants for other rhodium Vaska type complexes of this nature (Meijboom et al., 2005).

Table 1 shows the angles C37—Rh—P1 and C37—Rh—P2 are nearly equal, while P2—Rh—Cl is 90.348 (15) ° and P1—Rh—Cl is only 86.675 (15) °. This inequality around the chlorine's displacement is interesting as the most linear hydrogen bond involving Cl1 is between C40—H40···Cl1 (162 °, Table 2) pulling it towards C40—H40 and thus decreasing the angle of P1—Rh—Cl. Additionally, the rhodium complexes link each other via weak intermolecular C—H···O and C—H···Cl hydrogen bonds (Table 2). The weak interactions between the acetone solvent molecule and the Rh—Cl unit resulted in a reduced P—Rh—Cl angle of 86.675 (15)°.

The ν(CO) stretching frequency of compound (1) is 1985 cm-1 which is higher than that of [Rh(CO)Cl{P(C6H5)3}2], the unchloronated version, which was reported by Roodt (Roodt et al., 2003) as 1979 cm-1. The increase is due to the moderate electron withdrawing capabilities of the para-substituted chlorine on the phenyl rings.

Experimental

To a solution of [Rh2(CO)4Cl2] (19.7 mg, 0.051 mmol) in acetone (3 cm3) was added 4 equivalents of a solution of P(4-ClC6H4)3 ligand (73.7 mg, 0.203 mmol) in acetone (2 cm3) while stirring. Immediately the effervescence of a gas, presumably CO, was observed. The solvent was evaporated in a round bottomed flask overnight yielding 62% of the title compound (28.2 mg, 0.0314 mmol). IR (cm-1): 629, 705, 746, 815, 1012, 1082, 1120, 1183, 1226, 1363, 1387, 1479, 1560, 1577, 1638, 1706, 1985 (CO). 13C NMR (δ /p.p.m., CDCl3): 139 (1 C, Ph), 137 (1 C, Ph), 135 (1 C, Ph), 133 (1 C, Ph), 130 (4 C, Ph), 129 (1 C, CO), 129 (1 C, Ph), 128 (1 C, Ph). 31P NMR (δ /p.p.m., CDCl3): 27.56 [1J(Rh—P) = 128 Hz].

Refinement

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors.

Figures

Fig. 1.
View of (I) (50% probability displacement ellipsoids) with H atoms omitted for clarity. The carbon atoms have been numbered sequentially and some labels have been omitted for clarity.

Crystal data

[RhCl(C18H12Cl3P)2(CO)]·C3H6OZ = 2
Mr = 955.64F(000) = 960
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6130 (7) ÅCell parameters from 25954 reflections
b = 12.7970 (8) Åθ = 1.8–28.4°
c = 16.7470 (11) ŵ = 1.01 mm1
α = 71.631 (1)°T = 100 K
β = 81.742 (1)°Block, yellow
γ = 68.537 (1)°0.37 × 0.17 × 0.07 mm
V = 2007.9 (2) Å3

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer9160 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −14→12
Tmin = 0.707, Tmax = 0.933k = −16→17
25954 measured reflectionsl = −21→22
10031 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0302P)2 + 1.7506P] where P = (Fo2 + 2Fc2)/3
10031 reflections(Δ/σ)max = 0.009
471 parametersΔρmax = 1.17 e Å3
4 restraintsΔρmin = −0.69 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II CCD diffractometer using an exposure time of 10 s/frame. A total of 1895 frames were collected with a frame width of 0.5° covering up to θ = 28.38° with 99.9% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.45279 (16)0.41780 (13)0.86206 (10)0.0164 (3)
C20.41530 (18)0.37176 (15)0.94513 (11)0.0210 (3)
H20.48110.33680.98740.025*
C30.28161 (19)0.37668 (16)0.96678 (12)0.0245 (4)
H30.25590.34511.02340.029*
C40.18729 (17)0.42829 (16)0.90434 (12)0.0232 (3)
C50.22084 (18)0.47737 (16)0.82210 (12)0.0245 (4)
H50.15390.51490.78050.029*
C60.35413 (18)0.47109 (15)0.80104 (11)0.0214 (3)
H60.37870.50350.74430.026*
C70.74075 (16)0.32026 (14)0.90731 (10)0.0171 (3)
C80.73223 (17)0.35235 (15)0.98114 (11)0.0198 (3)
H80.66030.41950.98920.024*
C90.82786 (18)0.28702 (17)1.04254 (11)0.0245 (4)
H90.82090.30781.09310.029*
C100.93422 (19)0.19046 (17)1.02877 (12)0.0261 (4)
C110.94494 (18)0.15729 (15)0.95637 (12)0.0249 (4)
H111.01810.0910.94810.03*
C120.84757 (17)0.22195 (15)0.89602 (11)0.0212 (3)
H120.85360.19910.84640.025*
C130.62608 (16)0.55598 (13)0.81044 (10)0.0161 (3)
C140.51081 (17)0.64893 (15)0.82071 (11)0.0205 (3)
H140.42650.63670.83590.025*
C150.51770 (19)0.75957 (15)0.80891 (12)0.0244 (4)
H150.43840.8230.81470.029*
C160.6411 (2)0.77582 (15)0.78876 (11)0.0232 (3)
C170.7573 (2)0.68537 (16)0.77805 (13)0.0263 (4)
H170.84160.6980.76380.032*
C180.74917 (18)0.57584 (15)0.78836 (12)0.0230 (3)
H180.82830.51370.78030.028*
C190.86583 (16)0.11855 (14)0.62309 (10)0.0173 (3)
C200.96226 (18)0.10485 (16)0.67746 (11)0.0232 (3)
H200.95710.16910.69620.028*
C211.06604 (19)−0.00186 (17)0.70460 (12)0.0276 (4)
H211.133−0.01080.74060.033*
C221.06923 (19)−0.09470 (16)0.67782 (11)0.0256 (4)
C230.9774 (2)−0.08305 (16)0.62225 (12)0.0266 (4)
H230.9838−0.14730.60310.032*
C240.87527 (19)0.02477 (15)0.59474 (12)0.0236 (3)
H240.81150.03430.55630.028*
C250.59960 (17)0.22421 (14)0.55503 (11)0.0196 (3)
C260.49901 (18)0.19286 (16)0.60992 (12)0.0242 (4)
H260.49530.1920.66710.029*
C270.4036 (2)0.16278 (17)0.58096 (14)0.0302 (4)
H270.3350.14120.61810.036*
C280.4105 (2)0.16491 (16)0.49772 (14)0.0304 (4)
C290.5097 (2)0.19354 (18)0.44249 (13)0.0312 (4)
H290.51330.19290.38560.037*
C300.60475 (19)0.22352 (17)0.47133 (12)0.0259 (4)
H300.67380.24370.43380.031*
C310.79052 (17)0.34837 (14)0.50272 (10)0.0183 (3)
C320.69971 (18)0.44776 (16)0.45032 (11)0.0223 (3)
H320.60580.45850.45570.027*
C330.74499 (19)0.53101 (16)0.39047 (11)0.0248 (4)
H330.68280.59830.35510.03*
C340.8822 (2)0.51408 (16)0.38325 (11)0.0246 (4)
C350.97511 (19)0.41477 (17)0.43215 (12)0.0261 (4)
H351.06920.40320.4250.031*
C360.92848 (18)0.33212 (15)0.49190 (11)0.0220 (3)
H360.99150.26370.52580.026*
C370.69720 (17)0.47391 (12)0.63949 (10)0.0180 (3)
P10.62373 (4)0.40975 (3)0.82264 (3)0.01420 (8)
P20.72683 (4)0.25790 (4)0.59485 (3)0.01550 (8)
Cl10.63216 (5)0.17010 (4)0.79542 (3)0.02401 (9)
Cl21.06102 (5)0.11330 (5)1.10165 (3)0.04090 (13)
Cl30.65127 (5)0.91247 (4)0.77695 (3)0.03312 (11)
Cl41.18984 (6)−0.23221 (5)0.71789 (3)0.03995 (13)
Cl50.28900 (6)0.13135 (5)0.46052 (4)0.04566 (15)
Cl60.93897 (6)0.62136 (4)0.31201 (3)0.03453 (11)
Cl70.02340 (5)0.42625 (5)0.92807 (4)0.03486 (11)
Rh10.668804 (12)0.340979 (10)0.705687 (7)0.01450 (4)
O10.71508 (14)0.55764 (11)0.59840 (8)0.0272 (3)
C380.3033 (2)0.03136 (18)0.88771 (14)0.0311 (4)
C390.3764 (3)−0.0610 (2)0.96104 (18)0.0542 (7)
H39A0.3645−0.13490.96510.081*
H39B0.34−0.0381.01260.081*
H39C0.473−0.0710.95390.081*
C400.2919 (3)0.1538 (2)0.87945 (19)0.0463 (6)
H40A0.23520.20750.83180.07*
H40B0.38230.16050.86990.07*
H40C0.25060.1740.93120.07*
O20.2549 (2)0.0074 (2)0.83829 (16)0.0709 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0168 (7)0.0131 (7)0.0212 (8)−0.0044 (6)−0.0005 (6)−0.0083 (6)
C20.0219 (8)0.0212 (8)0.0215 (8)−0.0077 (6)−0.0018 (6)−0.0073 (6)
C30.0255 (9)0.0272 (9)0.0248 (9)−0.0129 (7)0.0046 (7)−0.0105 (7)
C40.0173 (8)0.0227 (8)0.0354 (10)−0.0090 (6)0.0045 (7)−0.0159 (7)
C50.0202 (8)0.0237 (8)0.0309 (9)−0.0053 (7)−0.0050 (7)−0.0104 (7)
C60.0213 (8)0.0206 (8)0.0222 (8)−0.0066 (6)−0.0021 (6)−0.0058 (6)
C70.0165 (7)0.0148 (7)0.0194 (7)−0.0044 (6)−0.0028 (6)−0.0044 (6)
C80.0182 (8)0.0202 (8)0.0219 (8)−0.0061 (6)−0.0002 (6)−0.0079 (6)
C90.0226 (8)0.0317 (9)0.0203 (8)−0.0103 (7)−0.0015 (7)−0.0070 (7)
C100.0211 (8)0.0276 (9)0.0237 (9)−0.0070 (7)−0.0065 (7)0.0019 (7)
C110.0205 (8)0.0184 (8)0.0292 (9)−0.0015 (6)−0.0027 (7)−0.0031 (7)
C120.0206 (8)0.0173 (8)0.0245 (8)−0.0042 (6)−0.0014 (6)−0.0069 (6)
C130.0200 (8)0.0129 (7)0.0169 (7)−0.0055 (6)−0.0023 (6)−0.0056 (6)
C140.0195 (8)0.0169 (8)0.0260 (8)−0.0048 (6)−0.0023 (6)−0.0083 (6)
C150.0260 (9)0.0147 (8)0.0318 (9)−0.0019 (6)−0.0047 (7)−0.0100 (7)
C160.0351 (10)0.0133 (7)0.0237 (8)−0.0102 (7)−0.0065 (7)−0.0042 (6)
C170.0264 (9)0.0222 (8)0.0346 (10)−0.0128 (7)−0.0008 (7)−0.0087 (7)
C180.0203 (8)0.0176 (8)0.0326 (9)−0.0061 (6)0.0000 (7)−0.0099 (7)
C190.0166 (7)0.0168 (7)0.0177 (7)−0.0042 (6)−0.0005 (6)−0.0058 (6)
C200.0241 (9)0.0229 (8)0.0233 (8)−0.0051 (7)−0.0047 (7)−0.0093 (7)
C210.0220 (9)0.0317 (10)0.0247 (9)−0.0018 (7)−0.0065 (7)−0.0083 (7)
C220.0230 (9)0.0217 (8)0.0202 (8)0.0029 (7)−0.0002 (7)−0.0029 (7)
C230.0302 (10)0.0183 (8)0.0298 (9)−0.0023 (7)−0.0027 (7)−0.0112 (7)
C240.0248 (9)0.0198 (8)0.0272 (9)−0.0039 (7)−0.0068 (7)−0.0098 (7)
C250.0176 (8)0.0165 (7)0.0251 (8)−0.0024 (6)−0.0053 (6)−0.0085 (6)
C260.0218 (8)0.0206 (8)0.0311 (9)−0.0062 (7)−0.0041 (7)−0.0084 (7)
C270.0218 (9)0.0230 (9)0.0469 (12)−0.0078 (7)−0.0057 (8)−0.0093 (8)
C280.0251 (9)0.0180 (8)0.0511 (12)−0.0031 (7)−0.0179 (8)−0.0118 (8)
C290.0332 (10)0.0286 (10)0.0345 (10)−0.0045 (8)−0.0150 (8)−0.0138 (8)
C300.0242 (9)0.0276 (9)0.0281 (9)−0.0059 (7)−0.0055 (7)−0.0125 (7)
C310.0203 (8)0.0183 (7)0.0163 (7)−0.0049 (6)0.0003 (6)−0.0071 (6)
C320.0195 (8)0.0233 (8)0.0207 (8)−0.0032 (6)0.0001 (6)−0.0069 (7)
C330.0284 (9)0.0199 (8)0.0202 (8)−0.0021 (7)−0.0017 (7)−0.0049 (7)
C340.0319 (10)0.0213 (8)0.0213 (8)−0.0120 (7)0.0031 (7)−0.0054 (7)
C350.0226 (9)0.0268 (9)0.0292 (9)−0.0111 (7)0.0015 (7)−0.0061 (7)
C360.0209 (8)0.0203 (8)0.0234 (8)−0.0061 (6)−0.0017 (6)−0.0050 (7)
C370.0184 (7)0.0166 (7)0.0203 (7)−0.0053 (6)−0.0007 (6)−0.0075 (6)
P10.01491 (18)0.01144 (17)0.01693 (18)−0.00364 (14)−0.00065 (14)−0.00590 (14)
P20.01585 (19)0.01487 (18)0.01667 (19)−0.00427 (15)−0.00100 (14)−0.00663 (15)
Cl10.0373 (2)0.01797 (18)0.02145 (19)−0.01497 (17)0.00302 (16)−0.00717 (15)
Cl20.0270 (2)0.0523 (3)0.0291 (2)−0.0029 (2)−0.01223 (19)−0.0002 (2)
Cl30.0448 (3)0.0168 (2)0.0426 (3)−0.01495 (19)−0.0064 (2)−0.00755 (18)
Cl40.0390 (3)0.0304 (2)0.0270 (2)0.0134 (2)−0.0045 (2)−0.00510 (19)
Cl50.0371 (3)0.0340 (3)0.0742 (4)−0.0102 (2)−0.0292 (3)−0.0170 (3)
Cl60.0432 (3)0.0276 (2)0.0313 (2)−0.0178 (2)0.0031 (2)−0.00148 (19)
Cl70.0213 (2)0.0458 (3)0.0463 (3)−0.0170 (2)0.00739 (19)−0.0223 (2)
Rh10.01681 (7)0.01199 (6)0.01609 (6)−0.00515 (4)0.00030 (4)−0.00597 (4)
O10.0338 (7)0.0195 (6)0.0280 (7)−0.0111 (5)−0.0011 (5)−0.0040 (5)
C380.0233 (9)0.0279 (10)0.0451 (12)−0.0039 (7)−0.0021 (8)−0.0200 (9)
C390.0591 (17)0.0391 (13)0.0492 (15)−0.0084 (12)−0.0019 (12)−0.0020 (11)
C400.0412 (13)0.0286 (11)0.0677 (17)−0.0111 (10)−0.0042 (12)−0.0116 (11)
O20.0511 (12)0.0709 (14)0.1097 (18)0.0001 (10)−0.0314 (12)−0.0635 (14)

Geometric parameters (Å, °)

C1—C21.392 (2)C22—C231.380 (3)
C1—C61.397 (2)C22—Cl41.7434 (18)
C1—P11.8165 (17)C23—C241.393 (2)
C2—C31.396 (2)C23—H230.95
C2—H20.95C24—H240.95
C3—C41.383 (3)C25—C261.395 (3)
C3—H30.95C25—C301.398 (2)
C4—C51.377 (3)C25—P21.8221 (17)
C4—Cl71.7356 (18)C26—C271.397 (3)
C5—C61.387 (2)C26—H260.95
C5—H50.95C27—C281.378 (3)
C6—H60.95C27—H270.95
C7—C121.396 (2)C28—C291.373 (3)
C7—C81.402 (2)C28—Cl51.7438 (19)
C7—P11.8183 (17)C29—C301.392 (3)
C8—C91.387 (2)C29—H290.95
C8—H80.95C30—H300.95
C9—C101.392 (3)C31—C361.395 (2)
C9—H90.95C31—C321.400 (2)
C10—C111.383 (3)C31—P21.8235 (17)
C10—Cl21.7366 (19)C32—C331.391 (2)
C11—C121.386 (2)C32—H320.95
C11—H110.95C33—C341.385 (3)
C12—H120.95C33—H330.95
C13—C141.394 (2)C34—C351.384 (3)
C13—C181.397 (2)C34—Cl61.7426 (18)
C13—P11.8265 (16)C35—C361.392 (2)
C14—C151.394 (2)C35—H350.95
C14—H140.95C36—H360.95
C15—C161.378 (3)C37—O11.1420 (18)
C15—H150.95C37—Rh11.8177 (13)
C16—C171.384 (3)P1—Rh12.3127 (4)
C16—Cl31.7387 (17)P2—Rh12.3219 (4)
C17—C181.390 (2)Cl1—Rh12.3611 (4)
C17—H170.95C38—O21.200 (3)
C18—H180.95C38—C391.481 (3)
C19—C241.391 (2)C38—C401.490 (3)
C19—C201.394 (2)C39—H39A0.98
C19—P21.8231 (17)C39—H39B0.98
C20—C211.392 (3)C39—H39C0.98
C20—H200.95C40—H40A0.98
C21—C221.384 (3)C40—H40B0.98
C21—H210.95C40—H40C0.98
C2—C1—C6119.00 (15)C23—C24—H24119.7
C2—C1—P1125.78 (13)C26—C25—C30119.21 (17)
C6—C1—P1115.16 (12)C26—C25—P2119.51 (14)
C1—C2—C3120.45 (16)C30—C25—P2121.21 (14)
C1—C2—H2119.8C25—C26—C27120.16 (18)
C3—C2—H2119.8C25—C26—H26119.9
C4—C3—C2118.86 (17)C27—C26—H26119.9
C4—C3—H3120.6C28—C27—C26119.00 (19)
C2—C3—H3120.6C28—C27—H27120.5
C5—C4—C3121.87 (16)C26—C27—H27120.5
C5—C4—Cl7118.27 (15)C29—C28—C27122.19 (18)
C3—C4—Cl7119.80 (14)C29—C28—Cl5118.59 (17)
C4—C5—C6118.82 (17)C27—C28—Cl5119.22 (17)
C4—C5—H5120.6C28—C29—C30118.81 (19)
C6—C5—H5120.6C28—C29—H29120.6
C5—C6—C1120.96 (16)C30—C29—H29120.6
C5—C6—H6119.5C29—C30—C25120.61 (19)
C1—C6—H6119.5C29—C30—H30119.7
C12—C7—C8119.10 (15)C25—C30—H30119.7
C12—C7—P1119.17 (13)C36—C31—C32118.67 (16)
C8—C7—P1121.57 (12)C36—C31—P2120.49 (13)
C9—C8—C7120.63 (16)C32—C31—P2119.87 (13)
C9—C8—H8119.7C33—C32—C31120.96 (17)
C7—C8—H8119.7C33—C32—H32119.5
C8—C9—C10118.82 (17)C31—C32—H32119.5
C8—C9—H9120.6C34—C33—C32118.87 (17)
C10—C9—H9120.6C34—C33—H33120.6
C11—C10—C9121.59 (17)C32—C33—H33120.6
C11—C10—Cl2118.84 (15)C35—C34—C33121.55 (16)
C9—C10—Cl2119.51 (15)C35—C34—Cl6119.26 (15)
C10—C11—C12119.16 (17)C33—C34—Cl6119.19 (14)
C10—C11—H11120.4C34—C35—C36119.00 (17)
C12—C11—H11120.4C34—C35—H35120.5
C11—C12—C7120.69 (17)C36—C35—H35120.5
C11—C12—H12119.7C35—C36—C31120.89 (17)
C7—C12—H12119.7C35—C36—H36119.6
C14—C13—C18118.59 (15)C31—C36—H36119.6
C14—C13—P1123.20 (13)O1—C37—Rh1179.52 (16)
C18—C13—P1118.21 (12)C1—P1—C7108.94 (8)
C13—C14—C15120.87 (16)C1—P1—C13103.78 (7)
C13—C14—H14119.6C7—P1—C13101.87 (7)
C15—C14—H14119.6C1—P1—Rh1108.60 (5)
C16—C15—C14119.16 (16)C7—P1—Rh1114.06 (5)
C16—C15—H15120.4C13—P1—Rh1118.80 (5)
C14—C15—H15120.4C25—P2—C19104.16 (8)
C15—C16—C17121.33 (16)C25—P2—C31105.01 (8)
C15—C16—Cl3119.40 (14)C19—P2—C31104.90 (7)
C17—C16—Cl3119.27 (14)C25—P2—Rh1119.28 (6)
C16—C17—C18119.17 (17)C19—P2—Rh1110.52 (5)
C16—C17—H17120.4C31—P2—Rh1111.77 (5)
C18—C17—H17120.4C37—Rh1—P191.58 (5)
C17—C18—C13120.86 (16)C37—Rh1—P291.37 (5)
C17—C18—H18119.6P1—Rh1—P2175.268 (15)
C13—C18—H18119.6C37—Rh1—Cl1178.21 (5)
C24—C19—C20119.35 (16)P1—Rh1—Cl186.675 (15)
C24—C19—P2122.03 (13)P2—Rh1—Cl190.348 (15)
C20—C19—P2118.57 (13)O2—C38—C39120.8 (2)
C21—C20—C19120.77 (17)O2—C38—C40122.3 (2)
C21—C20—H20119.6C39—C38—C40116.8 (2)
C19—C20—H20119.6C38—C39—H39A109.5
C22—C21—C20118.33 (17)C38—C39—H39B109.5
C22—C21—H21120.8H39A—C39—H39B109.5
C20—C21—H21120.8C38—C39—H39C109.5
C23—C22—C21122.22 (17)H39A—C39—H39C109.5
C23—C22—Cl4118.67 (15)H39B—C39—H39C109.5
C21—C22—Cl4119.08 (15)C38—C40—H40A109.5
C22—C23—C24118.69 (17)C38—C40—H40B109.5
C22—C23—H23120.7H40A—C40—H40B109.5
C24—C23—H23120.7C38—C40—H40C109.5
C19—C24—C23120.54 (17)H40A—C40—H40C109.5
C19—C24—H24119.7H40B—C40—H40C109.5
C6—C1—C2—C31.3 (2)C32—C33—C34—Cl6−176.89 (14)
P1—C1—C2—C3−175.68 (13)C33—C34—C35—C36−2.2 (3)
C1—C2—C3—C4−0.2 (3)Cl6—C34—C35—C36176.83 (15)
C2—C3—C4—C5−1.7 (3)C34—C35—C36—C310.0 (3)
C2—C3—C4—Cl7175.40 (14)C32—C31—C36—C352.1 (3)
C3—C4—C5—C62.3 (3)P2—C31—C36—C35−166.64 (15)
Cl7—C4—C5—C6−174.84 (14)C2—C1—P1—C75.09 (17)
C4—C5—C6—C1−1.0 (3)C6—C1—P1—C7−172.00 (12)
C2—C1—C6—C5−0.7 (3)C2—C1—P1—C13−102.85 (15)
P1—C1—C6—C5176.61 (14)C6—C1—P1—C1380.06 (13)
C12—C7—C8—C9−0.5 (2)C2—C1—P1—Rh1129.86 (14)
P1—C7—C8—C9−175.72 (13)C6—C1—P1—Rh1−47.23 (13)
C7—C8—C9—C101.4 (3)C12—C7—P1—C1123.09 (14)
C8—C9—C10—C11−1.2 (3)C8—C7—P1—C1−61.67 (15)
C8—C9—C10—Cl2175.78 (14)C12—C7—P1—C13−127.67 (14)
C9—C10—C11—C120.1 (3)C8—C7—P1—C1347.57 (15)
Cl2—C10—C11—C12−176.89 (14)C12—C7—P1—Rh11.59 (15)
C10—C11—C12—C70.8 (3)C8—C7—P1—Rh1176.83 (12)
C8—C7—C12—C11−0.6 (3)C14—C13—P1—C1−7.18 (16)
P1—C7—C12—C11174.71 (14)C18—C13—P1—C1173.94 (14)
C18—C13—C14—C150.2 (3)C14—C13—P1—C7−120.32 (15)
P1—C13—C14—C15−178.63 (14)C18—C13—P1—C760.80 (15)
C13—C14—C15—C16−1.5 (3)C14—C13—P1—Rh1113.46 (14)
C14—C15—C16—C171.6 (3)C18—C13—P1—Rh1−65.42 (15)
C14—C15—C16—Cl3−178.16 (14)C26—C25—P2—C1992.47 (15)
C15—C16—C17—C18−0.4 (3)C30—C25—P2—C19−84.32 (16)
Cl3—C16—C17—C18179.36 (15)C26—C25—P2—C31−157.52 (14)
C16—C17—C18—C13−0.9 (3)C30—C25—P2—C3125.69 (16)
C14—C13—C18—C171.0 (3)C26—C25—P2—Rh1−31.31 (16)
P1—C13—C18—C17179.91 (15)C30—C25—P2—Rh1151.90 (13)
C24—C19—C20—C21−1.1 (3)C24—C19—P2—C2515.80 (16)
P2—C19—C20—C21176.43 (14)C20—C19—P2—C25−161.65 (14)
C19—C20—C21—C22−1.5 (3)C24—C19—P2—C31−94.30 (15)
C20—C21—C22—C233.3 (3)C20—C19—P2—C3188.26 (15)
C20—C21—C22—Cl4−174.74 (15)C24—C19—P2—Rh1145.08 (13)
C21—C22—C23—C24−2.4 (3)C20—C19—P2—Rh1−32.37 (15)
Cl4—C22—C23—C24175.62 (15)C36—C31—P2—C25−139.07 (14)
C20—C19—C24—C232.0 (3)C32—C31—P2—C2552.33 (16)
P2—C19—C24—C23−175.44 (14)C36—C31—P2—C19−29.59 (16)
C22—C23—C24—C19−0.3 (3)C32—C31—P2—C19161.81 (14)
C30—C25—C26—C27−0.9 (3)C36—C31—P2—Rh190.20 (14)
P2—C25—C26—C27−177.74 (14)C32—C31—P2—Rh1−78.39 (15)
C25—C26—C27—C28−0.1 (3)C1—P1—Rh1—C37119.85 (8)
C26—C27—C28—C291.2 (3)C7—P1—Rh1—C37−118.47 (8)
C26—C27—C28—Cl5−178.26 (14)C13—P1—Rh1—C371.69 (8)
C27—C28—C29—C30−1.2 (3)C1—P1—Rh1—Cl1−60.55 (6)
Cl5—C28—C29—C30178.27 (15)C7—P1—Rh1—Cl161.14 (6)
C28—C29—C30—C250.1 (3)C13—P1—Rh1—Cl1−178.70 (6)
C26—C25—C30—C290.9 (3)C25—P2—Rh1—C37−116.11 (8)
P2—C25—C30—C29177.70 (14)C19—P2—Rh1—C37123.26 (8)
C36—C31—C32—C33−2.2 (3)C31—P2—Rh1—C376.83 (8)
P2—C31—C32—C33166.64 (14)C25—P2—Rh1—Cl164.39 (7)
C31—C32—C33—C340.1 (3)C19—P2—Rh1—Cl1−56.23 (6)
C32—C33—C34—C352.1 (3)C31—P2—Rh1—Cl1−172.66 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.553.492 (3)170
C21—H21···O2ii0.952.343.267 (3)165
C24—H24···Cl5iii0.952.803.4734 (19)129
C30—H30···Cl4iv0.952.763.575 (2)145
C35—H35···O1v0.952.473.384 (2)161
C40—H40B···Cl10.982.793.738 (3)162

Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) −x+1, −y, −z+1; (iv) −x+2, −y, −z+1; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2294).

References

  • Angoletta, M. (1959). Gazz. Chim. Ital.89, 2359–2361.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2, SAINT-Plus and SADABS BrukerAXS Inc, Madison, Wisconsin, USA.
  • Chen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441–2442.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409–1411.
  • Meijboom, R., Muller, A. & Roodt, A. (2005). Acta Cryst. E61, m1283–m1285.
  • Otto, S. (2001). Acta Cryst. C57, 793–795. [PubMed]
  • Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299.
  • Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev.245, 121–137.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc.83, 2784–2785.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography