PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1359.
Published online 2010 October 2. doi:  10.1107/S1600536810038845
PMCID: PMC3009216

Acetonitrile­bis­(2-methyl-1,10-phenanthroline)copper(II) tetra­fluoridoborate

Abstract

In the title compound, [Cu(CH3CN)(C13H10N2)2](BF4)2, the fivefold-coordinate CuII atom is located on a twofold rotation axis, imposing twofold symmetry to the complete cation. The structure exhibits disorder of the anion, which was successfully refined using a two-site model with 0.810 (3):0.190 (3) occupancy. The methyl group of the acetonitrile ligand is likewise disordered, here about the twofold rotation axis in a 1:1 ratio.

Related literature

For related structures, see: Watton (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1359-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3N)(C13H10N2)2](BF4)2
  • M r = 666.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1359-efi1.jpg
  • a = 25.0665 (11) Å
  • b = 8.8120 (1) Å
  • c = 16.8419 (14) Å
  • β = 131.824 (8)°
  • V = 2772.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.87 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Oxford Diffraction Sapphire 3 CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.784, T max = 1
  • 30296 measured reflections
  • 5578 independent reflections
  • 4442 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.120
  • S = 1.08
  • 5578 reflections
  • 219 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 1.07 e Å−3
  • Δρmin = −0.81 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global, New_Global_Publ_Block. DOI: 10.1107/S1600536810038845/fj2341sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038845/fj2341Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Dr Guy Crundwell (CCSU) for assistance with resolving the disorder present in the structure.

supplementary crystallographic information

Comment

The structure represents the first example of a copper coordination complex containing the 2-methyl phenanthroline ligand, and is part of a continuing study of the structural influence of substitutuents at the proximal positions of the phenanthroline ligand. The structure exhibits 2-fold rotational symmetry at the copper center, with the copper atom and ligated acetonitrile ligand being located on a twofold axis of the unit cell. The methyl groups on the phenanthroline ligand are located close to the N atom of the acetonitrile ligand, and steric interactions between the atoms are most likely responsible for the observed increase in reduction potential for the 2-methyl phenanthroline complex relative to the unsubstituted analog (James, 1961). Nevertheless, the complex does not exhibit the substantial distortion of the copper coordination sphere observed in the analogous 2,9-dimethyl complex (ref, Watton 2009). The BF4- counterions exhibit a two-site disorder, refinement of which indicated an approximately 81:19% occupancy of the two sites.

Experimental

Crystals were grown by vapor diffusion of ether into an acetonitrile solution prepared by addition of 0.041 g (0.20 mmol, ~ 2.1 equivalents) of ligand to 0.024 g (ca 0.1 mmol, ~ 1 equivalent) of Cu(BF4)2.xH2O. Yield ~40%. (It should be noted that since the composition of Cu(BF4)2.xH2O is not well defined, the relative amounts of Cu- and ligand, as well as the overall yield of the reaction are correspondingly uncertain).

Figures

Fig. 1.
ORTEP plot indicating atom labeling scheme. Labels with an "a" suffix indicate symmetry equivalents of the corresponding atom numbers. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity. The model ...
Fig. 2.
The preparation of the title compound and the structure of the cation.

Crystal data

[Cu(C2H3N)(C13H10N2)2](BF4)2F(000) = 1348
Mr = 666.67Dx = 1.597 Mg m3
Monoclinic, C2/cMelting point: 573 K
Hall symbol: -C2ycMo Kα radiation, λ = 0.71073 Å
a = 25.0665 (11) ÅCell parameters from 18534 reflections
b = 8.8120 (1) Åθ = 3.8–34.6°
c = 16.8419 (14) ŵ = 0.87 mm1
β = 131.824 (8)°T = 293 K
V = 2772.2 (3) Å3Block, green
Z = 40.25 × 0.2 × 0.15 mm

Data collection

Oxford Diffraction Sapphire 3 CCD diffractometer5578 independent reflections
Radiation source: fine-focus sealed tube4442 reflections with I > 2σ(I)
graphiteRint = 0.016
ω scansθmax = 34.7°, θmin = 4.0°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)h = −39→40
Tmin = 0.784, Tmax = 1k = −14→13
30296 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0639P)2 + 2.765P] where P = (Fo2 + 2Fc2)/3
5578 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 1.07 e Å3
6 restraintsΔρmin = −0.81 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.13529 (8)1.05662 (18)0.79172 (12)0.0273 (3)
C20.17740 (9)1.0448 (2)0.76412 (15)0.0338 (3)
H20.22071.09670.80410.041*
C30.15571 (9)0.9591 (2)0.68020 (15)0.0338 (3)
H30.18440.95030.66380.041*
C40.08932 (8)0.88348 (17)0.61807 (13)0.0268 (3)
C50.06222 (10)0.7871 (2)0.52973 (15)0.0335 (3)
H50.08940.77210.51110.040*
C6−0.00201 (10)0.7173 (2)0.47264 (14)0.0325 (3)
H6−0.01810.65430.41620.039*
C7−0.04559 (8)0.73991 (17)0.49864 (12)0.0257 (3)
C8−0.11375 (9)0.6737 (2)0.44131 (13)0.0332 (3)
H8−0.13220.60850.38470.040*
C9−0.15234 (9)0.7061 (2)0.46972 (14)0.0340 (3)
H9−0.19750.66370.43220.041*
C10−0.12360 (8)0.80361 (17)0.55573 (12)0.0267 (3)
H10−0.15060.82530.57400.032*
C11−0.02038 (7)0.83494 (15)0.58437 (10)0.0198 (2)
C120.04852 (7)0.90451 (15)0.64633 (11)0.0205 (2)
C130.16252 (10)1.1435 (2)0.88823 (14)0.0377 (4)
H13A0.16051.25020.87480.057*
H13B0.21121.11480.94710.057*
H13C0.13351.12170.90500.057*
C140.00001.3587 (2)0.75000.0282 (4)
C150.00001.5232 (3)0.75000.0525 (9)
H15A−0.04431.55950.72790.079*0.50
H15B0.00511.55950.70160.079*0.50
H15C0.03921.55950.82050.079*0.50
Cu10.00000.99458 (2)0.75000.01924 (7)
N10.07141 (6)0.98891 (12)0.73210 (10)0.0208 (2)
N2−0.05911 (6)0.86627 (13)0.61224 (9)0.0207 (2)
N30.00001.2302 (2)0.75000.0303 (4)
B10.18636 (13)0.4493 (3)0.30558 (19)0.0314 (4)0.810 (3)
F10.19869 (8)0.38867 (18)0.24324 (13)0.0455 (4)0.810 (3)
F20.1938 (6)0.3381 (6)0.3661 (9)0.1162 (15)0.810 (3)
F30.2324 (2)0.5670 (4)0.3570 (3)0.0722 (10)0.810 (3)
F40.1172 (3)0.5089 (5)0.2417 (3)0.0696 (13)0.810 (3)
B1B0.1736 (6)0.4482 (13)0.3248 (8)0.0314 (4)0.190 (3)
F1B0.1694 (4)0.4945 (7)0.4000 (6)0.0455 (4)0.190 (3)
F2B0.193 (3)0.306 (3)0.363 (4)0.1162 (15)0.190 (3)
F3B0.2359 (10)0.532 (2)0.3811 (16)0.0722 (10)0.190 (3)
F4B0.1126 (13)0.463 (3)0.2259 (18)0.0696 (13)0.190 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0216 (6)0.0254 (6)0.0285 (7)−0.0038 (5)0.0140 (5)0.0041 (5)
C20.0228 (6)0.0349 (8)0.0405 (9)−0.0028 (6)0.0198 (6)0.0081 (7)
C30.0280 (7)0.0370 (8)0.0432 (9)0.0026 (6)0.0265 (7)0.0097 (7)
C40.0284 (6)0.0272 (6)0.0321 (7)0.0056 (5)0.0233 (6)0.0083 (5)
C50.0408 (8)0.0371 (8)0.0385 (8)0.0077 (7)0.0331 (8)0.0055 (7)
C60.0425 (9)0.0337 (8)0.0309 (7)0.0045 (6)0.0284 (7)−0.0005 (6)
C70.0298 (6)0.0244 (6)0.0234 (6)0.0008 (5)0.0179 (6)−0.0015 (5)
C80.0348 (8)0.0312 (7)0.0282 (7)−0.0057 (6)0.0188 (6)−0.0093 (6)
C90.0271 (7)0.0333 (8)0.0340 (8)−0.0096 (6)0.0173 (6)−0.0112 (6)
C100.0222 (6)0.0266 (6)0.0303 (7)−0.0040 (5)0.0171 (6)−0.0049 (5)
C110.0214 (5)0.0176 (5)0.0208 (5)0.0013 (4)0.0143 (5)0.0014 (4)
C120.0208 (5)0.0194 (5)0.0230 (6)0.0018 (4)0.0153 (5)0.0041 (4)
C130.0314 (8)0.0371 (8)0.0319 (8)−0.0150 (7)0.0158 (7)−0.0063 (6)
C140.0373 (11)0.0202 (8)0.0382 (11)0.0000.0298 (10)0.000
C150.068 (2)0.0182 (10)0.100 (3)0.0000.068 (2)0.000
Cu10.01965 (11)0.01729 (11)0.02048 (11)0.0000.01326 (9)0.000
N10.0189 (5)0.0198 (5)0.0218 (5)−0.0012 (4)0.0128 (4)0.0020 (4)
N20.0198 (5)0.0192 (5)0.0235 (5)−0.0016 (4)0.0146 (4)−0.0016 (4)
N30.0415 (10)0.0213 (8)0.0366 (10)0.0000.0296 (9)0.000
B10.0278 (10)0.0394 (11)0.0316 (10)0.0043 (8)0.0217 (8)0.0098 (9)
F10.0439 (7)0.0483 (8)0.0544 (9)−0.0133 (6)0.0370 (7)−0.0170 (6)
F20.1160 (18)0.129 (3)0.153 (2)0.061 (3)0.1105 (19)0.109 (3)
F30.0757 (12)0.081 (2)0.098 (2)−0.0216 (14)0.0735 (16)−0.0299 (17)
F40.0408 (10)0.124 (4)0.0501 (17)0.040 (2)0.0330 (13)0.0346 (19)
B1B0.0278 (10)0.0394 (11)0.0316 (10)0.0043 (8)0.0217 (8)0.0098 (9)
F1B0.0439 (7)0.0483 (8)0.0544 (9)−0.0133 (6)0.0370 (7)−0.0170 (6)
F2B0.1160 (18)0.129 (3)0.153 (2)0.061 (3)0.1105 (19)0.109 (3)
F3B0.0757 (12)0.081 (2)0.098 (2)−0.0216 (14)0.0735 (16)−0.0299 (17)
F4B0.0408 (10)0.124 (4)0.0501 (17)0.040 (2)0.0330 (13)0.0346 (19)

Geometric parameters (Å, °)

C1—N11.3356 (18)C12—N11.3652 (18)
C1—C21.413 (2)C13—H13A0.9600
C1—C131.488 (2)C13—H13B0.9600
C2—C31.356 (3)C13—H13C0.9600
C2—H20.9300C14—N31.133 (3)
C3—C41.409 (2)C14—C151.449 (3)
C3—H30.9300C15—H15A0.9600
C4—C121.3985 (19)C15—H15B0.9600
C4—C51.431 (2)C15—H15C0.9600
C5—C61.353 (3)Cu1—N1i2.0042 (12)
C5—H50.9300Cu1—N12.0043 (12)
C6—C71.436 (2)Cu1—N22.0669 (12)
C6—H60.9300Cu1—N2i2.0669 (12)
C7—C111.4030 (19)Cu1—N32.0759 (19)
C7—C81.411 (2)B1—F21.334 (6)
C8—C91.365 (3)B1—F31.351 (4)
C8—H80.9300B1—F11.384 (3)
C9—C101.401 (2)B1—F41.397 (5)
C9—H90.9300B1B—F4B1.32 (3)
C10—N21.3312 (18)B1B—F2B1.344 (16)
C10—H100.9300B1B—F3B1.381 (15)
C11—N21.3589 (17)B1B—F1B1.399 (11)
C11—C121.4297 (18)
N1—C1—C2120.27 (15)C1—C13—H13C109.5
N1—C1—C13119.85 (14)H13A—C13—H13C109.5
C2—C1—C13119.87 (14)H13B—C13—H13C109.5
C3—C2—C1121.05 (15)N3—C14—C15180.000 (3)
C3—C2—H2119.5C14—C15—H15A109.5
C1—C2—H2119.5C14—C15—H15B109.5
C2—C3—C4119.43 (15)H15A—C15—H15B109.5
C2—C3—H3120.3C14—C15—H15C109.5
C4—C3—H3120.3H15A—C15—H15C109.5
C12—C4—C3117.02 (15)H15B—C15—H15C109.5
C12—C4—C5118.98 (14)N1i—Cu1—N1177.15 (6)
C3—C4—C5124.00 (14)N1i—Cu1—N296.41 (5)
C6—C5—C4121.56 (14)N1—Cu1—N282.02 (5)
C6—C5—H5119.2N1i—Cu1—N2i82.02 (5)
C4—C5—H5119.2N1—Cu1—N2i96.41 (5)
C5—C6—C7120.47 (15)N2—Cu1—N2i113.67 (7)
C5—C6—H6119.8N1i—Cu1—N391.43 (3)
C7—C6—H6119.8N1—Cu1—N391.43 (3)
C11—C7—C8117.39 (13)N2—Cu1—N3123.16 (3)
C11—C7—C6118.96 (14)N2i—Cu1—N3123.16 (3)
C8—C7—C6123.65 (14)C1—N1—C12119.08 (13)
C9—C8—C7119.42 (14)C1—N1—Cu1128.24 (11)
C9—C8—H8120.3C12—N1—Cu1112.67 (9)
C7—C8—H8120.3C10—N2—C11118.39 (12)
C8—C9—C10119.64 (15)C10—N2—Cu1130.48 (10)
C8—C9—H9120.2C11—N2—Cu1110.88 (9)
C10—C9—H9120.2C14—N3—Cu1180.000 (1)
N2—C10—C9122.38 (14)F2—B1—F3116.7 (6)
N2—C10—H10118.8F2—B1—F1107.9 (5)
C9—C10—H10118.8F3—B1—F1104.8 (2)
N2—C11—C7122.78 (13)F2—B1—F4109.5 (5)
N2—C11—C12117.02 (12)F3—B1—F4107.2 (3)
C7—C11—C12120.20 (12)F1—B1—F4110.5 (2)
N1—C12—C4123.06 (13)F4B—B1B—F2B116 (3)
N1—C12—C11117.17 (11)F4B—B1B—F3B130.2 (18)
C4—C12—C11119.77 (13)F2B—B1B—F3B107 (2)
C1—C13—H13A109.5F4B—B1B—F1B113.1 (12)
C1—C13—H13B109.5F2B—B1B—F1B94 (2)
H13A—C13—H13B109.5F3B—B1B—F1B87.4 (9)

Symmetry codes: (i) −x, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2341).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watton, S. P. (2009). Acta Cryst. E65, m585–m586. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography