PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1383.
Published online 2010 October 9. doi:  10.1107/S1600536810039917
PMCID: PMC3009210

Hexaaqua­nickel(II) 4,4′-(1,2-dihy­droxy­ethane-1,2-di­yl)dibenzoate monohydrate

Abstract

In the title compound, [Ni(H2O)6](C16H12O6)·H2O, the NiII cation is located on a mirror plane and is coordinated by six water mol­ecules, two of which are also located on the mirror plane, in a distorted octa­hedral geometry. The 4,4′-(1,2-dihy­droxy­ethane-1,2-di­yl)dibenzoate anion is centrosymmetric with the mid-point of the central ethane C—C bond located on an inversion center. The uncoordinated water mol­ecule is located on a mirror plane. Extensive O—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For metal-organic networks constructed from benzene–multicarboxyl­ate ligands, see: Wisser et al. (2008 [triangle]); Sun et al. (2006 [triangle]); Janiak (2003 [triangle]). For structures incorporating benzene-1,4-dicarboxyl­ate, see: Carton et al. (2007 [triangle]); Manna et al. (2007 [triangle]); Banerjee et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1383-scheme1.jpg

Experimental

Crystal data

  • [Ni(H2O)6](C16H12O6)·H2O
  • M r = 485.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1383-efi1.jpg
  • a = 6.0189 (12) Å
  • b = 20.436 (4) Å
  • c = 8.6096 (17) Å
  • β = 103.95 (3)°
  • V = 1027.8 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.21 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.751, T max = 0.816
  • 9071 measured reflections
  • 2120 independent reflections
  • 2024 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.184
  • S = 1.03
  • 2120 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039917/xu5046sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039917/xu5046Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guangdong Ocean University for supporting this work.

supplementary crystallographic information

Comment

Metal-organic networks constructed by benzene-multicarboxylato ligands, have attracted a great deal of recent interest (Wisser et al., 2008; Sun et al., 2006; Janiak et al., 2003). Benzene-1,4-dicarboxylate with a 180° angle between the two carboxylic groups, can form short bridges via one carboxylato end and long bridges via the benzene ring, leading to a great variety of novel structures (Carton et al., 2007; Manna et al., 2007; Banerjee et al., 2005). Considering that in mind, our group select a derivative of the benzene-1,4-dicarboxylate named 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate to react with Ni(NO3)2 to obtain novel metal-organic complex.

In figure 1, the title compound (C16H12O6)[Ni6H2O].H2O is obtained under hydrothermal condition, which comprises one 4,4'-(1,2-dihydroxyethane-1,2 -diyl)dibenzoate anion, one [Ni6H2O]2+ cation and a solvent water molecule, of which the [Ni6H2O]2+ cation and solvent water is lying on mirror planes, and the anion is locating on an inversion center. the two carboxyl groups of the ligand are total deprotonated, indicated by a difference of the bond lengths, which are also lying in the plane of the benzene rings. and the NiII center is coordinated by six water molecules instead of the 4,4'-(1,2-dihydroxyethane- 1,2-diyl)dibenzoate ligand. the O—H···O hydrogen bonding interactions between the carboxyl and hydroxyl of the ligands build an infinite chain along a axis. the chains, [Ni6H2O]2+ cations and solvent water molecules was further linked by additional O—H···O hydrogen bonds, forming a three-dimensional network.

Experimental

A solution of 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoic acid (0.5 mol, 0.15 g) and Ni(NO3)2 (0.5 mol, 0.14 g) and 20 ml water was stirred continuously, whose pH was adjusted to 7 by the addition of NaOH solution. The solution was then sealed in an autoclave equipped with a Teflon liner (20 ml) and heated at 373 K for 4 days. Crystals of the title compound were obtained by slow evaporation at room temperature.

Refinement

H atoms bound to C atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 Å (aromatic) and 0.98 Å (CH) and with Uiso(H) = 1.2 Ueq(C). H atoms of hydroxyl group and water molecules were located in a difference Fourier map and refined as riding with O—H = 0.85+_0.01 Å and Uiso(H) = 1.5Ueq(O) for water O atoms and O—H = 0.89±0.01 Å and 1.2 Ueq(O) for hydroxyl.

Figures

Fig. 1.
The title compound, with the atom-numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids (H atoms are represented by arbitrary spheres). [Symmetry codes: (i) -x, -y, -z; (ii) x, 0.5 - y, z.]
Fig. 2.
The packing and hydrogen bonding of the title compound.

Crystal data

[Ni(H2O)6](C16H12O6)·H2OF(000) = 508
Mr = 485.08Dx = 1.567 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 3600 reflections
a = 6.0189 (12) Åθ = 1.4–28°
b = 20.436 (4) ŵ = 1.01 mm1
c = 8.6096 (17) ÅT = 293 K
β = 103.95 (3)°Block, green
V = 1027.8 (4) Å30.30 × 0.25 × 0.21 mm
Z = 2

Data collection

Rigaku/MSC Mercury CCD diffractometer2120 independent reflections
Radiation source: fine-focus sealed tube2024 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 26.2°, θmin = 3.2°
Absorption correction: multi-scan (REQAB; Jacobson, 1998)h = −7→7
Tmin = 0.751, Tmax = 0.816k = −25→25
9071 measured reflectionsl = −10→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.040P)2 + 10.P] where P = (Fo2 + 2Fc2)/3
2120 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.14235 (16)0.25000.95708 (11)0.0242 (3)
O1W−0.2105 (8)0.25000.8578 (6)0.0279 (11)
H1W−0.24880.21520.80650.042*
O2W0.1795 (7)0.1762 (3)0.8058 (6)0.0555 (14)
H3W0.29470.15840.78500.083*
H4W0.06310.17130.73010.083*
O3W0.4872 (10)0.25001.0567 (7)0.0504 (18)
H5W0.52460.25001.15720.076*
H6W0.60210.25001.01750.076*
O4W0.0917 (8)0.3180 (2)1.1214 (5)0.0439 (11)
H7W0.02010.31011.19180.066*
H8W0.04390.35091.06470.066*
O10.5811 (7)0.1431 (2)0.7095 (5)0.0438 (11)
O20.8274 (7)0.1532 (3)0.5570 (6)0.0559 (14)
O30.1710 (8)−0.0731 (2)0.0238 (6)0.0478 (12)
H100.2666−0.09210.10560.072*
C10.6426 (10)0.1337 (3)0.5802 (8)0.0404 (15)
C20.4864 (9)0.0953 (3)0.4462 (7)0.0352 (13)
C30.2822 (10)0.0692 (3)0.4681 (8)0.0401 (14)
H10.23940.07650.56350.048*
C40.1421 (10)0.0323 (3)0.3473 (7)0.0397 (14)
H20.00510.01550.36210.048*
C50.2046 (10)0.0205 (3)0.2063 (7)0.0364 (14)
C60.5483 (10)0.0834 (3)0.3050 (8)0.0416 (15)
H40.68520.10040.29030.050*
C70.4090 (11)0.0465 (3)0.1839 (8)0.0432 (15)
H30.45200.03920.08860.052*
C80.0514 (10)−0.0204 (3)0.0746 (7)0.0389 (14)
H9−0.0740−0.03840.11580.047*
O5W0.8270 (14)0.25000.3307 (9)0.097 (4)
H9W0.84550.21920.39710.145*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0219 (5)0.0290 (5)0.0213 (5)0.0000.0045 (3)0.000
O1W0.024 (2)0.026 (3)0.032 (3)0.0000.003 (2)0.000
O2W0.028 (2)0.076 (4)0.056 (3)0.008 (2)−0.003 (2)−0.036 (3)
O3W0.027 (3)0.099 (6)0.021 (3)0.000−0.003 (2)0.000
O4W0.048 (2)0.045 (3)0.037 (2)−0.002 (2)0.0068 (19)−0.010 (2)
O10.036 (2)0.041 (2)0.045 (3)−0.0026 (19)−0.0069 (19)−0.011 (2)
O20.032 (2)0.071 (3)0.058 (3)−0.013 (2)−0.002 (2)−0.027 (3)
O30.050 (3)0.030 (2)0.052 (3)0.004 (2)−0.010 (2)−0.007 (2)
C10.033 (3)0.033 (3)0.045 (4)0.005 (3)−0.012 (3)−0.014 (3)
C20.029 (3)0.028 (3)0.039 (3)0.003 (2)−0.010 (2)−0.009 (2)
C30.038 (3)0.036 (3)0.040 (3)−0.001 (3)−0.003 (3)−0.006 (3)
C40.036 (3)0.035 (3)0.041 (3)−0.007 (3)−0.006 (3)−0.003 (3)
C50.035 (3)0.022 (3)0.041 (3)0.001 (2)−0.013 (2)−0.002 (2)
C60.031 (3)0.039 (3)0.047 (4)−0.001 (3)−0.005 (3)−0.013 (3)
C70.039 (3)0.041 (3)0.041 (3)0.002 (3)−0.007 (3)−0.010 (3)
C80.036 (3)0.028 (3)0.044 (3)0.000 (2)−0.009 (3)−0.008 (3)
O5W0.062 (5)0.197 (12)0.033 (4)0.0000.015 (4)0.000

Geometric parameters (Å, °)

Ni1—O2Wi2.039 (5)O3—H100.8851
Ni1—O2W2.039 (4)C1—C21.519 (7)
Ni1—O3W2.046 (6)C2—C61.376 (9)
Ni1—O4W2.058 (4)C2—C31.393 (9)
Ni1—O4Wi2.058 (4)C3—C41.392 (8)
Ni1—O1W2.090 (5)C3—H10.9300
O1W—H1W0.8400C4—C51.377 (9)
O2W—H3W0.8400C4—H20.9300
O2W—H4W0.8400C5—C71.395 (9)
O3W—H5W0.8400C5—C81.526 (7)
O3W—H6W0.8400C6—C71.393 (8)
O4W—H7W0.8400C6—H40.9300
O4W—H8W0.8398C7—H30.9300
O1—C11.269 (8)C8—C8ii1.531 (12)
O2—C11.242 (8)C8—H90.9800
O3—C81.422 (7)O5W—H9W0.8396
O2Wi—Ni1—O2W95.4 (3)O2—C1—C2117.2 (6)
O2Wi—Ni1—O3W90.66 (17)O1—C1—C2119.1 (6)
O2W—Ni1—O3W90.66 (17)C6—C2—C3119.2 (5)
O2Wi—Ni1—O4W89.8 (2)C6—C2—C1120.8 (6)
O2W—Ni1—O4W174.6 (2)C3—C2—C1120.0 (6)
O3W—Ni1—O4W90.87 (18)C4—C3—C2120.1 (6)
O2Wi—Ni1—O4Wi174.6 (2)C4—C3—H1119.9
O2W—Ni1—O4Wi89.8 (2)C2—C3—H1119.9
O3W—Ni1—O4Wi90.87 (18)C5—C4—C3120.5 (6)
O4W—Ni1—O4Wi85.0 (3)C5—C4—H2119.7
O2Wi—Ni1—O1W89.75 (16)C3—C4—H2119.7
O2W—Ni1—O1W89.75 (16)C4—C5—C7119.5 (5)
O3W—Ni1—O1W179.4 (2)C4—C5—C8120.4 (6)
O4W—Ni1—O1W88.68 (17)C7—C5—C8120.1 (6)
O4Wi—Ni1—O1W88.68 (17)C2—C6—C7121.0 (6)
Ni1—O1W—H1W109.7C2—C6—H4119.5
Ni1—O2W—H3W132.8C7—C6—H4119.5
Ni1—O2W—H4W112.6C6—C7—C5119.7 (6)
H3W—O2W—H4W111.1C6—C7—H3120.2
Ni1—O3W—H5W115.1C5—C7—H3120.2
Ni1—O3W—H6W133.0O3—C8—C5112.6 (5)
H5W—O3W—H6W111.9O3—C8—C8ii106.6 (7)
Ni1—O4W—H7W123.6C5—C8—C8ii112.0 (6)
Ni1—O4W—H8W103.2O3—C8—H9108.5
H7W—O4W—H8W114.1C5—C8—H9108.5
C8—O3—H10111.6C8ii—C8—H9108.5
O2—C1—O1123.7 (5)
O2—C1—C2—C6−0.5 (9)C3—C2—C6—C70.7 (9)
O1—C1—C2—C6−179.2 (6)C1—C2—C6—C7177.9 (6)
O2—C1—C2—C3176.7 (6)C2—C6—C7—C5−0.6 (10)
O1—C1—C2—C3−2.0 (9)C4—C5—C7—C60.6 (9)
C6—C2—C3—C4−0.7 (9)C8—C5—C7—C6−179.6 (5)
C1—C2—C3—C4−178.0 (6)C4—C5—C8—O3−126.7 (6)
C2—C3—C4—C50.8 (9)C7—C5—C8—O353.5 (8)
C3—C4—C5—C7−0.7 (9)C4—C5—C8—C8ii113.2 (8)
C3—C4—C5—C8179.6 (5)C7—C5—C8—C8ii−66.6 (9)

Symmetry codes: (i) x, −y+1/2, z; (ii) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H10···O1iii0.891.942.810 (6)168
O1W—H1W···O1iv0.841.872.684 (5)162
O2W—H3W···O10.842.012.821 (6)163
O2W—H4W···O2iv0.841.832.667 (6)174
O3W—H5W···O5Wv0.842.062.724 (10)136
O3W—H6W···O1Wvi0.841.982.783 (8)161
O4W—H7W···O5Wvii0.842.233.017 (8)157
O4W—H8W···O3viii0.842.052.840 (6)157
O5W—H9W···O20.841.952.776 (8)168

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) x−1, y, z; (v) x, y, z+1; (vi) x+1, y, z; (vii) x−1, y, z+1; (viii) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5046).

References

  • Banerjee, S., Lassahn, P. G., Janiak, C. & Ghosh, A. (2005). Polyhedron, 24, 2963–2971.
  • Carton, A., Mesbah, A., Perrin, L. & François, M. (2007). Acta Cryst. E63, m948–m949.
  • Jacobson, R. (1998). REQAB Private communication to Rigaku Corporation, Tokyo, Japan.
  • Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Manna, S. C., Zangrando, E., Ribas, J. & Chaudjuri, N. R. (2007). Dalton Trans. pp. 1383–1391. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, C. Y., Gao, S. & Jin, L. P. (2006). Eur. J. Inorg. Chem. pp. 2411–2421.
  • Wisser, B., Chamayou, A. C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461–466.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography