PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1441–m1442.
Published online 2010 October 23. doi:  10.1107/S1600536810039401
PMCID: PMC3009206

catena-Poly[[diaqua­calcium(II)]-bis­(μ-quinoline-3-carboxyl­ato)]

Abstract

In the title complex, [Ca(C10H6NO2)2(H2O)2]n, the CaII ion is eight-coordinated by six carboxyl­ate O atoms from four separate quinoline-3-carboxyl­ate ligands, two of which are bidentate chelate and two bridging, and two water mol­ecules in a distorted square-anti­prismatic geometry. The bridging groups form a polymeric chain substructure extending along the c axis, the chains being connected by coordinated-water O—H(...)N and O—H(...)Ocarboxyl­ate hydrogen bonds into a three-dimensional framework structure.

Related literature

For the potential uses and diverse structural types of metal complexes with the quinoline-3-carboxyl­ate ligand, see: Hu et al. (2007 [triangle]). For related structures, see: Martell & Smith (1974 [triangle]); Haendler (1986 [triangle], 1996 [triangle]); Okabe & Koizumi (1997 [triangle]); Okabe & Makino (1998 [triangle], 1999 [triangle]); Okabe & Muranishi (2002 [triangle]); Odoko et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1441-scheme1.jpg

Experimental

Crystal data

  • [Ca(C10H6NO2)2(H2O)2]
  • M r = 420.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1441-efi1.jpg
  • a = 16.0115 (16) Å
  • b = 15.3636 (16) Å
  • c = 7.7962 (8) Å
  • β = 97.928 (1)°
  • V = 1899.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 296 K
  • 0.30 × 0.26 × 0.25 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.897, T max = 0.913
  • 9735 measured reflections
  • 3411 independent reflections
  • 2433 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.090
  • S = 1.02
  • 3411 reflections
  • 262 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039401/zs2067sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039401/zs2067Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Non-profit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No·A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002)

supplementary crystallographic information

Comment

Design and synthesis of metal-organic complexes have attracted extensive attention in coordination chemistry. Quinoline-2-carboxylic acid, which is a tryptophan metabolite (Martell & Smith, 1974) can be considered as a potential ligand and the crystal structures of a number of metal complexes containing the quinoline-2-carboxylate ligand have been determined, e.g. with MnII (Haendler, 1996; Okabe & Koizumi, 1997), CuII (Haendler, 1986), VIV (Okabe & Muranishi, 2002). FeII and CoII (Okabe & Makino, 1998, 1999), and NiII (Odoko et al., 2001). However, to the best of our knowledge, there are few crystal structures containing the quinoline-3-carboxylate ligand, one example being the coordination polymer with ZnII (Hu et al.,2007). In this paper, we report the synthesis and structure of a new CaII complex obtained from the reaction of quinoline-3-carboxylic acid with CaCl2 under hydrothermal condition, the title compound [Ca(C20H12N2O4)(H2O)2]n (I).

In the title complex molecule the CaII atom is eight-coordinated by six carboxylate O atoms from four separate quinoline-2-carboxylate ligands (two bidentate chelate and two bridging) and two water O atoms, in a distorted square-antiprismatic environment (Fig. 1). The bridging carboxylate O atoms (O2 and O3) [Ca—O, 2.3877 (16), 2.3829 (16) Å] link separate CaII centres forming a one-dimensional chain substructure extended along c (Fig.2). The chains are inter-connected by coordinated-water O—H···N and O—H···Ocarboxylate hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

Experimental

A mixture of CaCl2 (0.02 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 Å and N—H = 0.86 Å and Uiso(H) = 1.2 or 1.5Ueq(C, N).

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
Fig. 2.
The one-dimensional chain substructure of (I) extending along c.
Fig. 3.
The three-dimensional hydrogen-bonded structure of (I).

Crystal data

[Ca(C10H6NO2)2(H2O)2]F(000) = 872
Mr = 420.43Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 16.0115 (16) Åθ = 1.4–25.0°
b = 15.3636 (16) ŵ = 0.37 mm1
c = 7.7962 (8) ÅT = 296 K
β = 97.928 (1)°Block, colorless
V = 1899.5 (3) Å30.30 × 0.26 × 0.25 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3411 independent reflections
Radiation source: fine-focus sealed tube2433 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −19→16
Tmin = 0.897, Tmax = 0.913k = −18→18
9735 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0344P)2 + 0.6204P] where P = (Fo2 + 2Fc2)/3
3411 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ca10.24944 (3)0.78080 (3)0.25589 (6)0.02366 (14)
C10.45779 (14)0.63295 (14)0.1201 (3)0.0284 (5)
N20.58144 (13)0.54488 (14)0.1998 (3)0.0420 (6)
C20.48749 (15)0.65988 (16)−0.0265 (3)0.0349 (6)
H20.45620.6989−0.10080.042*
C100.50824 (16)0.57576 (17)0.2313 (3)0.0394 (6)
H100.48870.55870.33310.047*
C110.37390 (15)0.66290 (14)0.1614 (3)0.0278 (5)
C80.61064 (15)0.57047 (16)0.0508 (3)0.0360 (6)
C30.56531 (16)0.62891 (17)−0.0660 (3)0.0374 (6)
C70.68710 (17)0.53586 (18)0.0112 (4)0.0471 (7)
H70.71820.49800.08850.057*
C40.59749 (19)0.6509 (2)−0.2199 (4)0.0626 (9)
H40.56870.6903−0.29700.075*
C60.71558 (19)0.5574 (2)−0.1385 (4)0.0634 (9)
H60.76590.5337−0.16380.076*
C50.6704 (2)0.6145 (3)−0.2557 (5)0.0743 (11)
H50.69040.6279−0.35900.089*
N10.00972 (12)0.44091 (13)0.2997 (3)0.0352 (5)
C220.15016 (13)0.63803 (14)0.3447 (3)0.0244 (5)
C120.11785 (14)0.54892 (15)0.3760 (3)0.0272 (5)
C210.04213 (15)0.51849 (15)0.2802 (3)0.0323 (6)
H210.01340.55560.19820.039*
C130.16177 (15)0.49416 (16)0.4924 (3)0.0319 (6)
H130.21130.51290.55860.038*
C180.02177 (17)0.30129 (17)0.4363 (4)0.0423 (7)
H18−0.03010.28560.37520.051*
C140.13216 (16)0.40902 (15)0.5126 (3)0.0327 (6)
C190.05460 (16)0.38521 (15)0.4152 (3)0.0329 (6)
C170.0653 (2)0.24367 (19)0.5447 (4)0.0543 (8)
H170.04330.18840.55690.065*
C150.17626 (18)0.34683 (18)0.6242 (4)0.0470 (7)
H150.22800.36120.68760.056*
C160.1433 (2)0.26606 (19)0.6392 (4)0.0579 (9)
H160.17270.22540.71260.069*
O30.18843 (9)0.67991 (10)0.47024 (19)0.0292 (4)
O40.14006 (10)0.66737 (10)0.1932 (2)0.0335 (4)
O10.36040 (11)0.66234 (11)0.3145 (2)0.0405 (4)
O20.32086 (9)0.69201 (10)0.0404 (2)0.0312 (4)
O1W0.15496 (10)0.88329 (10)0.3557 (2)0.0360 (4)
H1W0.14870.87140.45880.054*
H2W0.11560.90510.32820.054*
O2W0.34752 (10)0.88362 (11)0.1592 (2)0.0414 (5)
H3W0.35770.87850.04590.062*
H4W0.37510.93130.19640.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca10.0245 (3)0.0257 (2)0.0204 (3)−0.0003 (2)0.00171 (18)0.00021 (19)
C10.0283 (13)0.0289 (13)0.0266 (13)0.0030 (10)−0.0005 (10)−0.0037 (10)
N20.0387 (13)0.0447 (13)0.0421 (14)0.0147 (11)0.0040 (10)0.0051 (11)
C20.0309 (14)0.0390 (14)0.0332 (15)0.0070 (11)−0.0014 (11)0.0048 (12)
C100.0383 (16)0.0442 (16)0.0357 (15)0.0123 (12)0.0049 (12)0.0048 (12)
C110.0328 (14)0.0238 (12)0.0261 (14)0.0012 (10)0.0009 (11)−0.0020 (10)
C80.0306 (15)0.0365 (14)0.0398 (16)0.0041 (11)0.0015 (12)−0.0056 (12)
C30.0332 (15)0.0424 (15)0.0370 (15)0.0036 (12)0.0057 (12)0.0014 (12)
C70.0353 (16)0.0483 (17)0.058 (2)0.0118 (13)0.0067 (14)−0.0031 (14)
C40.051 (2)0.086 (2)0.056 (2)0.0174 (17)0.0216 (16)0.0237 (18)
C60.0412 (19)0.077 (2)0.076 (2)0.0149 (17)0.0228 (17)−0.006 (2)
C50.057 (2)0.111 (3)0.062 (2)0.017 (2)0.0312 (18)0.017 (2)
N10.0315 (12)0.0328 (12)0.0405 (13)−0.0059 (9)0.0020 (10)−0.0042 (10)
C220.0215 (12)0.0274 (12)0.0248 (13)−0.0006 (10)0.0051 (10)−0.0045 (10)
C120.0283 (13)0.0287 (12)0.0250 (13)−0.0030 (10)0.0052 (10)−0.0035 (10)
C210.0309 (14)0.0326 (14)0.0326 (14)−0.0038 (11)0.0016 (11)−0.0008 (11)
C130.0314 (14)0.0352 (14)0.0291 (14)−0.0056 (11)0.0040 (11)−0.0029 (11)
C180.0436 (17)0.0392 (15)0.0453 (18)−0.0111 (13)0.0105 (13)−0.0021 (13)
C140.0363 (15)0.0330 (14)0.0293 (14)−0.0026 (11)0.0061 (11)0.0002 (11)
C190.0351 (15)0.0317 (14)0.0336 (15)−0.0060 (11)0.0107 (11)−0.0065 (11)
C170.072 (2)0.0379 (16)0.055 (2)−0.0167 (15)0.0147 (17)0.0054 (14)
C150.0496 (18)0.0432 (16)0.0461 (18)−0.0063 (14)−0.0005 (14)0.0062 (13)
C160.073 (2)0.0407 (17)0.058 (2)−0.0011 (16)0.0035 (17)0.0175 (15)
O30.0333 (9)0.0287 (9)0.0246 (9)−0.0058 (7)0.0010 (7)−0.0030 (7)
O40.0404 (10)0.0370 (10)0.0225 (9)−0.0079 (8)0.0019 (7)0.0020 (7)
O10.0460 (11)0.0530 (11)0.0231 (10)0.0156 (9)0.0070 (8)0.0015 (8)
O20.0275 (9)0.0386 (10)0.0263 (10)0.0074 (7)0.0000 (7)0.0015 (7)
O1W0.0361 (10)0.0431 (10)0.0285 (10)0.0110 (8)0.0035 (8)0.0025 (8)
O2W0.0474 (12)0.0481 (11)0.0292 (10)−0.0211 (9)0.0070 (8)−0.0055 (8)

Geometric parameters (Å, °)

Ca1—O3i2.3829 (16)C5—H50.9300
Ca1—O1W2.3871 (16)N1—C211.317 (3)
Ca1—O2ii2.3877 (16)N1—C191.371 (3)
Ca1—O2W2.4202 (17)C22—O41.254 (3)
Ca1—O42.4712 (16)C22—O31.258 (3)
Ca1—O12.5404 (17)C22—C121.495 (3)
Ca1—O22.5538 (16)C12—C131.360 (3)
Ca1—O32.5689 (16)C12—C211.413 (3)
Ca1—H1W2.7828C21—H210.9300
C1—C21.362 (3)C13—C141.407 (3)
C1—C101.408 (3)C13—H130.9300
C1—C111.496 (3)C18—C171.350 (4)
N2—C101.318 (3)C18—C191.410 (3)
N2—C81.368 (3)C18—H180.9300
C2—C31.407 (3)C14—C191.412 (3)
C2—H20.9300C14—C151.414 (4)
C10—H100.9300C17—C161.402 (4)
C11—O11.242 (3)C17—H170.9300
C11—O21.261 (3)C15—C161.360 (4)
C8—C31.407 (3)C15—H150.9300
C8—C71.408 (3)C16—H160.9300
C3—C41.410 (4)O3—Ca1ii2.3829 (16)
C7—C61.352 (4)O2—Ca1i2.3877 (16)
C7—H70.9300O1W—H1W0.8432
C4—C51.357 (4)O1W—H2W0.7195
C4—H40.9300O2W—H3W0.9231
C6—C51.395 (4)O2W—H4W0.8836
C6—H60.9300
O3i—Ca1—O1W86.63 (5)O1—C11—C1119.0 (2)
O3i—Ca1—O2ii154.94 (6)O2—C11—C1118.7 (2)
O1W—Ca1—O2ii79.95 (6)N2—C8—C3121.8 (2)
O3i—Ca1—O2W75.13 (6)N2—C8—C7119.1 (2)
O1W—Ca1—O2W97.97 (6)C3—C8—C7119.1 (3)
O2ii—Ca1—O2W85.81 (5)C2—C3—C8117.8 (2)
O3i—Ca1—O478.80 (5)C2—C3—C4122.9 (2)
O1W—Ca1—O493.79 (6)C8—C3—C4119.1 (2)
O2ii—Ca1—O4122.87 (5)C6—C7—C8120.3 (3)
O2W—Ca1—O4150.61 (6)C6—C7—H7119.9
O3i—Ca1—O1122.42 (5)C8—C7—H7119.9
O1W—Ca1—O1150.78 (6)C5—C4—C3120.1 (3)
O2ii—Ca1—O174.02 (6)C5—C4—H4119.9
O2W—Ca1—O193.21 (6)C3—C4—H4119.9
O4—Ca1—O189.39 (6)C7—C6—C5120.9 (3)
O3i—Ca1—O271.54 (5)C7—C6—H6119.6
O1W—Ca1—O2158.17 (6)C5—C6—H6119.6
O2ii—Ca1—O2120.27 (6)C4—C5—C6120.5 (3)
O2W—Ca1—O276.99 (6)C4—C5—H5119.8
O4—Ca1—O282.10 (5)C6—C5—H5119.8
O1—Ca1—O250.97 (5)C21—N1—C19117.5 (2)
O3i—Ca1—O3128.11 (6)O4—C22—O3122.3 (2)
O1W—Ca1—O382.58 (5)O4—C22—C12118.7 (2)
O2ii—Ca1—O371.20 (5)O3—C22—C12119.0 (2)
O2W—Ca1—O3156.61 (6)C13—C12—C21118.4 (2)
O4—Ca1—O351.72 (5)C13—C12—C22121.1 (2)
O1—Ca1—O376.70 (5)C21—C12—C22120.5 (2)
O2—Ca1—O3110.53 (5)N1—C21—C12124.2 (2)
O3i—Ca1—Ca1i37.49 (4)N1—C21—H21117.9
O1W—Ca1—Ca1i123.88 (4)C12—C21—H21117.9
O2ii—Ca1—Ca1i151.60 (4)C12—C13—C14119.9 (2)
O2W—Ca1—Ca1i76.36 (4)C12—C13—H13120.1
O4—Ca1—Ca1i74.71 (4)C14—C13—H13120.1
O1—Ca1—Ca1i84.96 (4)C17—C18—C19120.3 (3)
O2—Ca1—Ca1i34.37 (4)C17—C18—H18119.9
O3—Ca1—Ca1i122.74 (4)C19—C18—H18119.9
O3i—Ca1—Ca1ii155.93 (4)C13—C14—C19117.7 (2)
O1W—Ca1—Ca1ii75.75 (4)C13—C14—C15123.3 (2)
O2ii—Ca1—Ca1ii37.14 (4)C19—C14—C15118.9 (2)
O2W—Ca1—Ca1ii122.94 (4)N1—C19—C18118.5 (2)
O4—Ca1—Ca1ii86.04 (4)N1—C19—C14122.3 (2)
O1—Ca1—Ca1ii75.51 (4)C18—C19—C14119.2 (2)
O2—Ca1—Ca1ii124.99 (4)C18—C17—C16120.9 (3)
O3—Ca1—Ca1ii34.37 (3)C18—C17—H17119.5
Ca1i—Ca1—Ca1ii152.71 (2)C16—C17—H17119.5
O3i—Ca1—H1W102.1C16—C15—C14120.2 (3)
O1W—Ca1—H1W16.6C16—C15—H15119.9
O2ii—Ca1—H1W68.0C14—C15—H15119.9
O2W—Ca1—H1W107.6C15—C16—C17120.5 (3)
O4—Ca1—H1W90.8C15—C16—H16119.8
O1—Ca1—H1W134.6C17—C16—H16119.8
O2—Ca1—H1W171.3C22—O3—Ca1ii161.76 (15)
O3—Ca1—H1W68.3C22—O3—Ca189.47 (13)
Ca1i—Ca1—H1W138.4Ca1ii—O3—Ca1108.15 (6)
Ca1ii—Ca1—H1W59.2C22—O4—Ca194.08 (13)
C2—C1—C10118.0 (2)C11—O1—Ca191.84 (14)
C2—C1—C11121.0 (2)C11—O2—Ca1i160.71 (15)
C10—C1—C11121.0 (2)C11—O2—Ca190.76 (13)
C10—N2—C8118.1 (2)Ca1i—O2—Ca1108.49 (6)
C1—C2—C3120.2 (2)Ca1—O1W—H1W109.4
C1—C2—H2119.9Ca1—O1W—H2W141.1
C3—C2—H2119.9H1W—O1W—H2W99.8
N2—C10—C1124.0 (2)Ca1—O2W—H3W116.8
N2—C10—H10118.0Ca1—O2W—H4W139.0
C1—C10—H10118.0H3W—O2W—H4W103.8
O1—C11—O2122.2 (2)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H4W···N2iii0.882.012.880 (3)170
O2W—H3W···O1i0.921.922.813 (2)163
O1W—H2W···N1iv0.722.182.885 (2)165
O1W—H1W···O4ii0.841.942.785 (2)174

Symmetry codes: (iii) −x+1, y+1/2, −z+1/2; (i) x, −y+3/2, z−1/2; (iv) −x, y+1/2, −z+1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2067).

References

  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Haendler, H. M. (1986). Acta Cryst. C42, 147–149.
  • Haendler, H. M. (1996). Acta Cryst. C52, 801–803.
  • Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.
  • Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.
  • Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267–m269.
  • Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854.
  • Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279–1280.
  • Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300–302.
  • Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287–m289.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography