PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2907–o2908.
Published online 2010 October 23. doi:  10.1107/S1600536810039395
PMCID: PMC3009201

8-Hy­droxy­quinolin-1-ium nitrate

Abstract

In the title salt, C9H8NO+·NO3 , the quinoline ring system is essentially planar with a maximum deviation of 0.043 (1) Å. In the crystal, an R 2 2(7) ring motif is formed by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds between the cation and the anion. In addition, inter­molecular O—H(...)O and C—H(...)O hydrogen bonds link the two ions, generating an R 2 2(8) ring motif. These sets of ring motifs are further linked into a ribbon along the a axis via inter­molecular C—H(...)O hydrogen bonds.

Related literature

For background to and the biological activity of quinoline derivatives, see: Campbell et al. (1988 [triangle]); Markees et al. (1970 [triangle]); Michael (1997 [triangle]); Morimoto et al. (1991 [triangle]); Reux et al. (2009 [triangle]); Sasaki et al. (1998 [triangle]). For related structures, see: Loh et al. (2010a [triangle],b [triangle],c [triangle],d [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2907-scheme1.jpg

Experimental

Crystal data

  • C9H8NO+·NO3
  • M r = 208.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2907-efi1.jpg
  • a = 11.3186 (2) Å
  • b = 6.7568 (1) Å
  • c = 14.5006 (2) Å
  • β = 128.882 (1)°
  • V = 863.27 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 100 K
  • 0.33 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.959, T max = 0.981
  • 9590 measured reflections
  • 1978 independent reflections
  • 1754 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.095
  • S = 1.08
  • 1978 reflections
  • 144 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039395/is2609sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039395/is2609Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks USM for the award of a USM fellowship and HM thanks USM for the award of a postdoctoral fellowship.

supplementary crystallographic information

Comment

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b,c,d). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Herein we report the synthesis of 8-hydroxyquinolin-1-ium nitrate.

The asymmetric unit of the title compound (Fig. 1) consists of one 8-hydroxyquinolin-1-ium cation (C1–C10/N1/N2) and one nitrate anion (O2–O4/N2). One proton is transferred from the hydroxyl group of nitric acid to the atom N1 of 8-hydroxyquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.043 (1) Å at atom C4. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b,c,d).

In the crystal packing (Fig. 2), R22(7) ring motifs are formed by intermolecular N1—H1N1···O4 and C2—H2A···O3 hydrogen bonds (Table 1). In addition, pairs of intermolecular O1—H1O1···O4 and C8—H8A···O2 hydrogen bonds (Table 1) link the cations and anions together to generate another set of R22(8) ring motifs. These sets of ring motifs are further linked into ribbons along the a axis via intermolecular C2—H2A···O3 hydrogen bonds (Table 1).

Experimental

A few drops of nitric acid were added to a hot methanol solution (20 ml) of 8-hydroxyquinoline (29 mg, Merck) which had been warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement

Atoms H1N1 and H1O1 were located from the difference Fourier map and were refined freely [N—H = 0.874 (18) Å and O—H = 0.86 (2) Å]. The remaining H atoms were positioned geometrically with the bond length of C—H being 0.93 Å and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound, viewed along the b axis.

Crystal data

C9H8NO+·NO3F(000) = 432
Mr = 208.17Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5491 reflections
a = 11.3186 (2) Åθ = 3.5–37.4°
b = 6.7568 (1) ŵ = 0.13 mm1
c = 14.5006 (2) ÅT = 100 K
β = 128.882 (1)°Block, colourless
V = 863.27 (2) Å30.33 × 0.21 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1978 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.959, Tmax = 0.981k = −8→8
9590 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0472P)2 + 0.3584P] where P = (Fo2 + 2Fc2)/3
1978 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.07908 (9)0.09986 (13)0.12784 (7)0.0167 (2)
N1−0.13600 (11)0.10475 (14)0.15595 (8)0.0139 (2)
C10.01506 (13)0.11333 (16)0.25398 (10)0.0138 (2)
C2−0.24612 (13)0.10646 (17)0.16438 (10)0.0163 (2)
H2A−0.34650.09530.09610.020*
C3−0.21344 (13)0.12476 (17)0.27446 (10)0.0171 (2)
H3A−0.29130.12790.27950.021*
C4−0.06498 (13)0.13802 (17)0.37464 (10)0.0158 (2)
H4A−0.04240.15460.44790.019*
C50.05450 (13)0.12672 (16)0.36803 (10)0.0144 (2)
C60.21000 (13)0.12812 (17)0.46913 (10)0.0171 (2)
H6A0.23830.13390.54470.020*
C70.31841 (13)0.12080 (18)0.45453 (10)0.0186 (3)
H7A0.42040.12090.52100.022*
C80.27878 (13)0.11312 (18)0.34078 (11)0.0177 (2)
H8A0.35470.11140.33340.021*
C90.12859 (13)0.10813 (16)0.24054 (10)0.0148 (2)
O20.52824 (10)0.47945 (18)0.24518 (8)0.0321 (3)
O30.53907 (10)0.42125 (15)0.39694 (8)0.0239 (2)
O40.74765 (9)0.44023 (13)0.41965 (7)0.0179 (2)
N20.60151 (11)0.44742 (16)0.35208 (9)0.0177 (2)
H1N1−0.1627 (19)0.091 (2)0.0852 (16)0.028 (4)*
H1O10.145 (2)0.056 (3)0.1211 (17)0.042 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0159 (4)0.0230 (4)0.0140 (4)0.0024 (3)0.0108 (3)0.0012 (3)
N10.0159 (5)0.0145 (5)0.0124 (4)0.0001 (4)0.0095 (4)−0.0002 (3)
C10.0161 (5)0.0114 (5)0.0137 (5)0.0003 (4)0.0094 (4)0.0003 (4)
C20.0153 (5)0.0169 (5)0.0167 (5)−0.0007 (4)0.0100 (4)−0.0008 (4)
C30.0189 (5)0.0183 (6)0.0200 (5)−0.0007 (4)0.0150 (5)−0.0012 (4)
C40.0216 (6)0.0138 (5)0.0150 (5)0.0000 (4)0.0130 (5)−0.0003 (4)
C50.0183 (5)0.0114 (5)0.0146 (5)−0.0001 (4)0.0108 (5)0.0000 (4)
C60.0198 (5)0.0163 (5)0.0133 (5)0.0006 (4)0.0095 (5)−0.0004 (4)
C70.0152 (5)0.0191 (6)0.0160 (5)0.0010 (4)0.0071 (4)−0.0004 (4)
C80.0163 (5)0.0186 (6)0.0203 (6)0.0008 (4)0.0126 (5)0.0003 (4)
C90.0184 (5)0.0132 (5)0.0147 (5)0.0010 (4)0.0113 (5)0.0010 (4)
O20.0186 (4)0.0607 (7)0.0157 (4)0.0030 (4)0.0101 (4)0.0078 (4)
O30.0169 (4)0.0395 (5)0.0197 (4)−0.0012 (4)0.0137 (4)0.0007 (4)
O40.0121 (4)0.0260 (5)0.0155 (4)0.0000 (3)0.0087 (3)−0.0005 (3)
N20.0141 (4)0.0238 (5)0.0159 (5)0.0002 (4)0.0098 (4)−0.0006 (4)

Geometric parameters (Å, °)

O1—C91.3558 (13)C4—H4A0.9300
O1—H1O10.86 (2)C5—C61.4170 (15)
N1—C21.3266 (15)C6—C71.3707 (16)
N1—C11.3770 (14)C6—H6A0.9300
N1—H1N10.874 (18)C7—C81.4126 (16)
C1—C91.4160 (16)C7—H7A0.9300
C1—C51.4196 (15)C8—C91.3790 (16)
C2—C31.3995 (16)C8—H8A0.9300
C2—H2A0.9300O2—N21.2343 (13)
C3—C41.3701 (16)O3—N21.2372 (13)
C3—H3A0.9300O4—N21.2899 (12)
C4—C51.4166 (16)
C9—O1—H1O1114.7 (13)C4—C5—C1117.82 (10)
C2—N1—C1122.28 (10)C6—C5—C1118.93 (10)
C2—N1—H1N1117.2 (11)C7—C6—C5119.40 (10)
C1—N1—H1N1120.5 (11)C7—C6—H6A120.3
N1—C1—C9120.19 (10)C5—C6—H6A120.3
N1—C1—C5118.95 (10)C6—C7—C8121.52 (11)
C9—C1—C5120.86 (10)C6—C7—H7A119.2
N1—C2—C3120.99 (10)C8—C7—H7A119.2
N1—C2—H2A119.5C9—C8—C7120.63 (11)
C3—C2—H2A119.5C9—C8—H8A119.7
C4—C3—C2119.03 (10)C7—C8—H8A119.7
C4—C3—H3A120.5O1—C9—C8125.09 (10)
C2—C3—H3A120.5O1—C9—C1116.28 (10)
C3—C4—C5120.81 (10)C8—C9—C1118.62 (10)
C3—C4—H4A119.6O2—N2—O3122.01 (10)
C5—C4—H4A119.6O2—N2—O4119.39 (9)
C4—C5—C6123.24 (10)O3—N2—O4118.60 (9)
C2—N1—C1—C9179.06 (10)C4—C5—C6—C7−178.64 (11)
C2—N1—C1—C5−0.72 (16)C1—C5—C6—C71.38 (16)
C1—N1—C2—C32.44 (17)C5—C6—C7—C80.40 (18)
N1—C2—C3—C4−0.98 (17)C6—C7—C8—C9−1.52 (18)
C2—C3—C4—C5−2.14 (17)C7—C8—C9—O1−179.71 (11)
C3—C4—C5—C6−176.26 (11)C7—C8—C9—C10.77 (17)
C3—C4—C5—C13.72 (16)N1—C1—C9—O11.69 (15)
N1—C1—C5—C4−2.31 (15)C5—C1—C9—O1−178.53 (10)
C9—C1—C5—C4177.91 (10)N1—C1—C9—C8−178.75 (10)
N1—C1—C5—C6177.67 (10)C5—C1—C9—C81.03 (16)
C9—C1—C5—C6−2.11 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.874 (18)1.944 (18)2.8112 (12)171.6 (15)
O1—H1O1···O4ii0.86 (3)1.83 (3)2.6794 (16)169 (2)
C2—H2A···O3iii0.932.533.106 (2)120
C2—H2A···O3i0.932.313.0247 (14)133
C8—H8A···O2ii0.932.403.249 (2)152

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2609).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem.31, 1031–1035. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2709. [PMC free article] [PubMed]
  • Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2726–o2727. [PMC free article] [PubMed]
  • Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2357. [PMC free article] [PubMed]
  • Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010d). Acta Cryst. E66, o2396. [PMC free article] [PubMed]
  • Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem.13, 324–326. [PubMed]
  • Michael, J. P. (1997). Nat. Prod. Rep.14, 605–608.
  • Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  • Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem.17, 4441–4447. [PubMed]
  • Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp.3851–3856.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography