PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2952.
Published online 2010 October 30. doi:  10.1107/S1600536810042765
PMCID: PMC3009195

N′-(4-Fluoro­benzyl­idene)acetohydrazide

Abstract

The title compound, C9H9FN2O, was prepared by the reaction of 4-fluoro­benzophenone and acethydrazide. In the mol­ecule, all non-H atoms are essentially coplanar [r.m.s. deviation = 0.065 (2) Å]. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of inter­molecular N—H(...)O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Goswami et al. (2009 [triangle]); Zhang et al. (2010 [triangle]). For related structures, see: Li & Jian (2008 [triangle]); Girgis (2006 [triangle]); Yang et al. (2010 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-66-o2952-scheme1.jpg

Experimental

Crystal data

  • C9H9FN2O
  • M r = 180.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2952-efi1.jpg
  • a = 10.443 (2) Å
  • b = 4.0418 (8) Å
  • c = 21.172 (4) Å
  • β = 96.71 (3)°
  • V = 887.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.24 × 0.22 × 0.22 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 7536 measured reflections
  • 2033 independent reflections
  • 1412 reflections with I > σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.176
  • S = 1.12
  • 2033 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042765/lh5151sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042765/lh5151Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the National Natural Science Foundation of Shandong Province (Y2008B29) and Yuandu Scholar of Weifang City.

supplementary crystallographic information

Comment

Schiff bases have received considerable attention in the literature (Zhang et al., 2010; Goswami et al., 2009). As part of our search for new schiff base compounds we synthesized the title compound(I) and its crystal structure is reported herein. In the title compound (Fig. 1), the bond lengths and angles are similar to those in related structures (Li & Jian, 2008; Yang et al., 2010). The C3═N2 bond length of 1.269 (2)Å is slight shorter than the C═N double bond [1.281 (2) Å and 1.2732 (18)] reported by Girgis (2006) and Yang et al. (2010). In the crystal structure, molecules are linked into centrosymmetric dimers by pairs of intermolecular N—H···O hydrogen bonds (Table 1).

Experimental

A mixture of the 4-fluorobenzophenone (0.02 mol) and acethydrazide (0.02 mol) was stirred in refluxing ethanol (30 ml) for 2 h to afford the title compound (yield 65%). Single crystals suitable for X-ray measurements were obtained by recrystallization from a solution of the title compound in ethanol at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H 0.93–0.96Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl)

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C9H9FN2OF(000) = 376
Mr = 180.18Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2033 reflections
a = 10.443 (2) Åθ = 3.7–27.5°
b = 4.0418 (8) ŵ = 0.11 mm1
c = 21.172 (4) ÅT = 293 K
β = 96.71 (3)°Bar, colourless
V = 887.5 (3) Å30.24 × 0.22 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1412 reflections with I > σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
graphiteθmax = 27.5°, θmin = 3.3°
[var phi] and ω scansh = −13→13
7536 measured reflectionsk = −5→5
2033 independent reflectionsl = −27→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.1001P)2 + 0.0565P] where P = (Fo2 + 2Fc2)/3
2033 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N20.41309 (13)0.8047 (4)0.12439 (6)0.0506 (4)
C40.50404 (14)0.7947 (4)0.23307 (7)0.0448 (4)
C30.50479 (15)0.7172 (4)0.16566 (7)0.0517 (4)
H3A0.57410.60120.15270.062*
N10.42670 (14)0.7124 (4)0.06305 (6)0.0574 (4)
H1A0.49210.59410.05610.069*
O10.35986 (12)0.7130 (4)−0.04043 (5)0.0692 (4)
F10.50984 (11)0.9900 (3)0.42320 (4)0.0807 (4)
C20.34069 (16)0.8017 (4)0.01332 (7)0.0533 (4)
C80.40253 (16)1.0213 (4)0.31985 (7)0.0545 (4)
H8A0.33331.12680.33520.065*
C70.50862 (17)0.9235 (4)0.36057 (7)0.0536 (4)
C50.60833 (15)0.6986 (4)0.27603 (7)0.0518 (4)
H5A0.67720.58820.26130.062*
C90.40169 (14)0.9588 (4)0.25596 (7)0.0497 (4)
H9A0.33181.02700.22770.060*
C60.61129 (16)0.7648 (4)0.34044 (7)0.0557 (4)
H6A0.68150.70250.36910.067*
C10.22542 (17)0.9959 (4)0.02534 (8)0.0631 (5)
H1B0.17381.0404−0.01430.095*
H1C0.25221.20110.04560.095*
H1D0.17570.87200.05250.095*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N20.0517 (8)0.0632 (8)0.0366 (7)−0.0062 (6)0.0045 (5)−0.0048 (5)
C40.0445 (8)0.0502 (8)0.0393 (8)−0.0073 (6)0.0030 (6)−0.0030 (6)
C30.0471 (8)0.0647 (10)0.0433 (8)−0.0038 (7)0.0058 (6)−0.0067 (7)
N10.0497 (8)0.0851 (10)0.0374 (7)0.0001 (7)0.0045 (5)−0.0076 (6)
O10.0619 (7)0.1067 (11)0.0384 (6)−0.0006 (7)0.0029 (5)−0.0048 (6)
F10.0863 (8)0.1149 (10)0.0392 (6)0.0063 (7)0.0000 (5)−0.0137 (5)
C20.0511 (9)0.0682 (10)0.0400 (8)−0.0107 (8)0.0033 (6)−0.0005 (7)
C80.0513 (9)0.0650 (10)0.0472 (9)0.0041 (7)0.0059 (6)−0.0074 (7)
C70.0600 (9)0.0648 (10)0.0350 (7)−0.0067 (8)0.0017 (6)−0.0056 (7)
C50.0432 (8)0.0635 (10)0.0484 (8)0.0001 (7)0.0035 (6)−0.0029 (7)
C90.0451 (8)0.0584 (9)0.0441 (8)−0.0002 (7)−0.0011 (6)−0.0030 (6)
C60.0488 (9)0.0697 (10)0.0458 (8)−0.0026 (7)−0.0061 (6)0.0018 (7)
C10.0681 (11)0.0673 (11)0.0533 (9)0.0041 (9)0.0043 (7)0.0044 (8)

Geometric parameters (Å, °)

N2—C31.269 (2)C8—C91.375 (2)
N2—N11.3744 (17)C8—C71.380 (2)
C4—C51.390 (2)C8—H8A0.9300
C4—C91.392 (2)C7—C61.360 (2)
C4—C31.462 (2)C5—C61.386 (2)
C3—H3A0.9300C5—H5A0.9300
N1—C21.351 (2)C9—H9A0.9300
N1—H1A0.8600C6—H6A0.9300
O1—C21.2317 (17)C1—H1B0.9600
F1—C71.3516 (17)C1—H1C0.9600
C2—C11.484 (2)C1—H1D0.9600
C3—N2—N1114.97 (14)F1—C7—C8118.09 (15)
C5—C4—C9118.69 (14)C6—C7—C8122.96 (14)
C5—C4—C3119.05 (15)C6—C5—C4121.01 (15)
C9—C4—C3122.25 (14)C6—C5—H5A119.5
N2—C3—C4121.53 (15)C4—C5—H5A119.5
N2—C3—H3A119.2C8—C9—C4120.87 (14)
C4—C3—H3A119.2C8—C9—H9A119.6
C2—N1—N2122.09 (15)C4—C9—H9A119.6
C2—N1—H1A119.0C7—C6—C5118.13 (15)
N2—N1—H1A119.0C7—C6—H6A120.9
O1—C2—N1118.51 (16)C5—C6—H6A120.9
O1—C2—C1122.36 (15)C2—C1—H1B109.5
N1—C2—C1119.12 (14)C2—C1—H1C109.5
C9—C8—C7118.32 (15)H1B—C1—H1C109.5
C9—C8—H8A120.8C2—C1—H1D109.5
C7—C8—H8A120.8H1B—C1—H1D109.5
F1—C7—C6118.94 (15)H1C—C1—H1D109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.899 (2)176

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5151).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Girgis, A. S. (2006). J. Chem. Res pp. 81–85.
  • Goswami, T. K., Roy, M., Nethaji, M. & Chakravarty, A. R. (2009). Organometallics, pp. 1992–1994
  • Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Jiang, Z.-D., Zhang, F.-G. & Jian, F.-F. (2010). Acta Cryst. E66, o927. [PMC free article] [PubMed]
  • Zhang, H. L., Syed, S. & Barbas, C. F. (2010). Org. Lett. pp. 708–711. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography