PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1405.
Published online 2010 October 13. doi:  10.1107/S1600536810039711
PMCID: PMC3009193

catena-Poly[[diaqua­cadmium(II)]-μ-4,4′-sulfonyl­dibenzoato-κ2 O 1:O 1′]

Abstract

The title compound, [Cd(C14H8O6S)(H2O)2]n, comprises zigzag chains parallel to [111] of alternating [Cd(H2O)2]2+ and sulfonyl­dibenzoate units, with the Cd and S atoms lying on crystallographic twofold axes. The central CdII ion is in a slightly distorted octa­hedral geometry, coordinated by six O atoms from two carboxyl­ate groups and two water O atoms. An intra­molecular C—H(...)O hydrogen bond occurs. In the crystal, inter­molecular hydrogen bonds between carboxyl­ate O atoms and coordinated water mol­ecules in adjacent chains lead to the formation of a three-dimensional network structure. The compound is isotypic with the Zn analog.

Related literature

For related compounds based on 4,4′-sulfonyl­dibenzoic acid, see: Xiao et al. (2007 [triangle]); Wu et al. (2007 [triangle]); Miyazawa et al. (2009 [triangle]); Wang et al. (2009 [triangle]). For the isotypic Zn analog, see: Pan et al. (2007 [triangle]). For potential application of metal-organic frameworks, see: Eddaoudi et al. (2001 [triangle]); Ferey et al. (2005 [triangle]); Kitagawa et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1405-scheme1.jpg

Experimental

Crystal data

  • [Cd(C14H8O6S)(H2O)2]
  • M r = 452.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1405-efi3.jpg
  • a = 13.293 (3) Å
  • b = 5.2742 (12) Å
  • c = 12.156 (3) Å
  • β = 116.145 (2)°
  • V = 765.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.61 mm−1
  • T = 298 K
  • 0.21 × 0.19 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.721, T max = 0.786
  • 3574 measured reflections
  • 1364 independent reflections
  • 1325 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.102
  • S = 1.24
  • 1361 reflections
  • 110 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −1.00 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039711/bx2311sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039711/bx2311Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In recent years, much attention has been focused on the construction of metal organic frameworks (MOFs) not only because of their fascinating structures and topologies but also owing to their potential application in many fields such as magnetism, catalysis, nonlinear optics. (Eddaoudi, et al., 2001; Kitagawa et al., 2004; Ferey et al., 2005.). The main method to construct such complexes is to use multidentate organic ligands. The organic aromatic polycarboxylate ligands are an important family of multidentate ligands. The 4,4'-sulfonyldibenzoic acid has been widely used in the construction of metal organic frameworks because of two carboxylate functions and its structural flexibility.(Xiao et al., 2007; Wu et al., 2007; Miyazawa et al., 2009; Wang et al., 2009.) We report here the synthesis and crystal structure of the title compound (I) based on 4,4'-sulfonyldibenzoic acid which is isostructural to the reported compound by Pan et al., 2007.

As shown in Fig. 1, the Cd centres in (I) are six-coordinate in a highly distorted octahedral geometry, involving four O atom donors of two 4,4'-sulfonyldibenzoic acid ligands and two coordinated water molecules, while the carboxylate group of 4,4'-sulfonyldibenzoic acid adopts µ211– chelating mode in this structure. The structure of (I) comprises zigzag chains of alternating [Cd(H2O)2]2+ and sulfonyldibenzoate unit, with their respective Cd and S atoms lying on crystallographic twofold axes. In the crystal structure there are three hydrogen bonds, two O—H···O intermolecular and one C—H···O intramolecular interactions, lead to the formation of a three dimensional network structure. Fig 2, Table 1.

Experimental

The title compound, (I), was prepared by the hydrothermal reaction of Cd(NO3)2.6H2O (34.5 mg, 0.1 mmol), 4,4'-sulfonyldibenzoic (30 mg, 0.1 mmol), 1,4-Bis(1,2,4-triazol-1-yl)butane (19.2 mg, 0.1 mmol), and NaOH (8.0 mg, 0.2 mmol) in H2O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 180 °C for 72 h. After cooling to room temperature, block colorless crystals of (I) were collected by filtration and washed by water and ethanol several times. (yield 47.25%, based on Cd). Elemental analysis for C14H12CdO8S (Mr = 452.72): C 37.14, H 2.67; found: 43.61, H 2.69.

Refinement

H atoms bonded to coordinated water oxygen atom were located in a difference Fourier map and fixed in the refinement, with Uiso(H)=1.2Ueq(O). All C-bound H atoms were positioned in calculated positions and refined using a riding model, with C—H = 0.93?(aromatic) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
: The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. [Symmetry codes: (A) –x, y, 3/2 - z]
Fig. 2.
: A view of (I), showing the three-dimensional framework constructed via O—H···O hydrogen bonds. Hydrogen bonds are depicted as dashed lines. [Symmetry codes: (iii) x, y - 1, z; (iv) x, -y, -1/2 + z]

Crystal data

[Cd(C14H8O6S)(H2O)2]F(000) = 448
Mr = 452.72Dx = 1.965 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 4318 reflections
a = 13.293 (3) Åθ = 2.2–27.2°
b = 5.2742 (12) ŵ = 1.61 mm1
c = 12.156 (3) ÅT = 298 K
β = 116.145 (2)°Block, white
V = 765.1 (3) Å30.21 × 0.19 × 0.15 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1364 independent reflections
Radiation source: fine-focus sealed tube1325 reflections with I > 2σ(I)
graphiteRint = 0.073
phi and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→15
Tmin = 0.721, Tmax = 0.786k = −6→6
3574 measured reflectionsl = −14→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.24w = 1/[σ2(Fo2) + (0.0652P)2] where P = (Fo2 + 2Fc2)/3
1361 reflections(Δ/σ)max = 0.004
110 parametersΔρmax = 0.82 e Å3
3 restraintsΔρmin = −1.00 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.06452 (2)0.75000.03071 (4)
S10.50001.11217 (9)1.25000.02880 (11)
O10.14145 (7)0.34261 (18)0.81726 (7)0.0355 (2)
O20.08657 (7)0.25919 (19)0.95927 (7)0.0382 (2)
O30.45660 (6)1.24838 (18)1.32215 (7)0.0379 (2)
O40.07556 (8)−0.2236 (2)0.67828 (7)0.0504 (3)
H4A0.0490−0.22110.60060.060*
H4B0.0724−0.37250.70340.060*
C10.14914 (9)0.3776 (3)0.92426 (9)0.0286 (2)
C20.23354 (12)0.5638 (2)1.00469 (11)0.0304 (4)
C30.32577 (10)0.6180 (3)0.98250 (11)0.0354 (3)
H30.33270.54180.91720.043*
C40.40667 (9)0.7851 (3)1.05787 (10)0.0365 (3)
H40.46930.81801.04490.044*
C50.39451 (10)0.9035 (2)1.15258 (11)0.0290 (3)
C60.30158 (9)0.8548 (3)1.17385 (10)0.0351 (3)
H60.29370.93531.23770.042*
C70.22143 (9)0.6857 (3)1.09904 (10)0.0349 (3)
H70.15880.65331.11210.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.03760 (6)0.02817 (8)0.02969 (5)0.0000.01787 (4)0.000
S10.03045 (16)0.03051 (18)0.02660 (15)0.0000.01361 (12)0.000
O10.0430 (3)0.0402 (4)0.0285 (2)−0.0069 (3)0.0206 (2)−0.0069 (3)
O20.0473 (3)0.0419 (5)0.0299 (3)−0.0117 (3)0.0211 (2)−0.0022 (3)
O30.0406 (3)0.0381 (5)0.0387 (4)0.0037 (4)0.0208 (3)−0.0066 (3)
O40.0902 (5)0.0382 (5)0.0411 (3)0.0184 (4)0.0456 (3)0.0079 (4)
C10.0348 (4)0.0289 (5)0.0234 (3)0.0038 (4)0.0140 (2)0.0057 (4)
C20.0345 (5)0.0342 (8)0.0240 (5)0.0000 (4)0.0143 (4)0.0034 (4)
C30.0375 (5)0.0461 (6)0.0309 (4)−0.0039 (5)0.0226 (3)−0.0076 (5)
C40.0348 (4)0.0464 (7)0.0378 (4)−0.0055 (5)0.0248 (3)−0.0056 (5)
C50.0305 (5)0.0305 (6)0.0253 (5)0.0004 (4)0.0116 (4)0.0028 (4)
C60.0394 (5)0.0426 (6)0.0314 (4)−0.0039 (6)0.0231 (3)−0.0065 (5)
C70.0375 (4)0.0405 (7)0.0364 (4)−0.0060 (5)0.0252 (3)−0.0035 (5)

Geometric parameters (Å, °)

Cd1—O42.2023 (11)O4—H4A0.8500
Cd1—O4i2.2023 (11)O4—H4B0.8499
Cd1—O12.2362 (10)C1—C21.4871 (16)
Cd1—O1i2.2362 (9)C2—C71.385 (2)
Cd1—O22.5040 (9)C2—C31.396 (2)
Cd1—O2i2.5040 (10)C3—C41.3801 (18)
Cd1—C1i2.7283 (12)C3—H30.9300
S1—O31.4367 (10)C4—C51.380 (2)
S1—O3ii1.4367 (10)C4—H40.9300
S1—C51.7655 (12)C5—C61.393 (2)
S1—C5ii1.7655 (12)C6—C71.3798 (17)
O1—C11.2725 (15)C6—H60.9300
O2—C11.2550 (17)C7—H70.9300
O4—Cd1—O4i92.73 (6)C1—O1—Cd198.32 (8)
O4—Cd1—O198.09 (4)C1—O2—Cd186.34 (7)
O4i—Cd1—O1139.87 (3)Cd1—O4—H4A113.0
O4—Cd1—O1i139.87 (3)Cd1—O4—H4B113.1
O4i—Cd1—O1i98.09 (4)H4A—O4—H4B110.5
O1—Cd1—O1i98.02 (5)O2—C1—O1120.51 (10)
O4—Cd1—O2126.84 (3)O2—C1—C2121.76 (11)
O4i—Cd1—O288.07 (4)O1—C1—C2117.73 (12)
O1—Cd1—O254.80 (3)C7—C2—C3119.83 (11)
O1i—Cd1—O292.21 (3)C7—C2—C1121.45 (14)
O4—Cd1—O2i88.07 (4)C3—C2—C1118.72 (13)
O4i—Cd1—O2i126.84 (3)C4—C3—C2119.75 (13)
O1—Cd1—O2i92.21 (3)C4—C3—H3120.1
O1i—Cd1—O2i54.80 (3)C2—C3—H3120.1
O2—Cd1—O2i131.59 (5)C5—C4—C3119.95 (13)
O4—Cd1—C1i114.36 (4)C5—C4—H4120.0
O4i—Cd1—C1i115.02 (4)C3—C4—H4120.0
O1—Cd1—C1i95.34 (4)C4—C5—C6120.73 (11)
O1i—Cd1—C1i27.48 (4)C4—C5—S1119.41 (11)
O2—Cd1—C1i113.08 (4)C6—C5—S1119.84 (10)
O2i—Cd1—C1i27.33 (4)C7—C6—C5119.16 (12)
O3—S1—O3ii119.99 (9)C7—C6—H6120.4
O3—S1—C5107.90 (6)C5—C6—H6120.4
O3ii—S1—C5108.43 (6)C6—C7—C2120.54 (13)
O3—S1—C5ii108.43 (6)C6—C7—H7119.7
O3ii—S1—C5ii107.90 (6)C2—C7—H7119.7
C5—S1—C5ii102.86 (8)
O4—Cd1—O1—C1−130.73 (7)O2—C1—C2—C3156.57 (12)
O4i—Cd1—O1—C1−26.66 (10)O1—C1—C2—C3−23.92 (16)
O1i—Cd1—O1—C186.14 (8)C7—C2—C3—C42.62 (18)
O2—Cd1—O1—C1−0.88 (7)C1—C2—C3—C4−178.34 (11)
O2i—Cd1—O1—C1140.90 (7)C2—C3—C4—C5−1.87 (19)
C1i—Cd1—O1—C1113.69 (8)C3—C4—C5—C60.49 (19)
O4—Cd1—O2—C172.63 (8)C3—C4—C5—S1178.80 (10)
O4i—Cd1—O2—C1164.60 (7)O3ii—S1—C5—C436.48 (11)
O1i—Cd1—O2—C1−97.38 (8)O3—S1—C5—C4167.88 (10)
O1—Cd1—O2—C10.89 (7)C5ii—S1—C5—C4−77.63 (10)
O2i—Cd1—O2—C1−54.85 (7)O3ii—S1—C5—C6−145.19 (10)
C1i—Cd1—O2—C1−78.93 (9)O3—S1—C5—C6−13.78 (12)
Cd1—O2—C1—O1−1.48 (11)C5ii—S1—C5—C6100.71 (11)
Cd1—O2—C1—C2178.02 (11)C4—C5—C6—C70.15 (19)
Cd1—O1—C1—O21.67 (13)S1—C5—C6—C7−178.16 (10)
Cd1—O1—C1—C2−177.85 (9)C5—C6—C7—C20.61 (18)
O2—C1—C2—C7−24.41 (18)C3—C2—C7—C6−2.00 (18)
O1—C1—C2—C7155.11 (11)C1—C2—C7—C6178.99 (11)

Symmetry codes: (i) −x, y, −z+3/2; (ii) −x+1, y, −z+5/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O1iii0.851.972.7479 (14)151
O4—H4A···O2iv0.852.002.7364 (15)145
C6—H6···O30.932.552.9208 (16)104

Symmetry codes: (iii) x, y−1, z; (iv) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2311).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Ferey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res.38, 217–225. [PubMed]
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Miyazawa, M., Irie, Y., Kashimoto, K., Nishina, N., Kondo, M., Yasue, S., Maeda, K. & Uchida, F. (2009). Inorg. Chem. Commun.12, 336–339.
  • Pan, P.-B., Zhang, L., Li, Z.-J., Cao, X.-Y. & Yao, Y.-G. (2007). Acta Cryst. C63, m270–m272. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, C.-J., Wang, Y.-Y., Liu, J.-Q., Wang, H., Shi, Q.-Z. & Peng, S.-M. (2009). Inorg. Chim. Acta, 362, 543–550.
  • Wu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67–m69.
  • Xiao, D.-R., Li, Y.-G., Wang, E.-B., Fan, L.-L., An, H.-Y., Su, Z.-M. & Xu, L. (2007). Inorg. Chem.46, 4158–4166. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography