PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1399.
Published online 2010 October 13. doi:  10.1107/S1600536810040043
PMCID: PMC3009188

Tris[2-eth­oxy-6-(methyl­imino­meth­yl)phenolato-κ2 N,O 1]cobalt(III) monohydrate

Abstract

In the title compound, [Co(C10H12NO2)3]·H2O, the CoIII ion is coordinated by three O atoms and three N atoms from three bidentate 2-eth­oxy-6-(methyl­imino­meth­yl)phenolate ligands in a slightly distorted octa­hedral environment. The water mol­ecule connects two ligands by O—H(...)O hydrogen bonds. One terminal methyl group is disordered over two positions, with site-occupancy factors of 0.412 (15) and 0.588 (15).

Related literature

For CoIII complexes, see: Park et al. (2008 [triangle]); Galezowski et al. (2008 [triangle]); Gupta et al. (2007 [triangle]). For Schiff-base compounds, see: Gupta & Sutar (2008 [triangle]); Sreenivasulu et al. (2005 [triangle]); Zhang & Feng (2010 [triangle]); Zhang et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1399-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H12NO2)3]·H2O
  • M r = 611.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1399-efi1.jpg
  • a = 14.022 (5) Å
  • b = 16.969 (6) Å
  • c = 14.233 (5) Å
  • β = 117.857 (4)°
  • V = 2994.1 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.62 mm−1
  • T = 296 K
  • 0.42 × 0.20 × 0.09 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.860, T max = 0.944
  • 21931 measured reflections
  • 5317 independent reflections
  • 3929 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.100
  • S = 1.01
  • 5317 reflections
  • 379 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040043/bt5367sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040043/bt5367Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported financially by the Guangxi Key Laboratory for Advanced Materials and New Preparation Technology (No. 0842003–25), the Young Science Foundation of Guangxi Province of China (No. 0832085) and the Doctoral start-up research fund of Guilin University of Technology.

supplementary crystallographic information

Comment

Schiff base complexes have been studied for many years (Gupta & Sutar, 2008; Sreenivasulu et al.,2005; Zhang et al., 2009; Zhang et al., 2010) and have attracted interest because of their anticancer, catalytic and fluorescent properties. Using 2-hydrogen-3-ethoxy-benzaldehyde, methylamine and Co(ClO4)2.6H2O, we have hydrothermally prepared the title compound, (I). As an example of CoIII compounds there is a series of CoIII complexes that were synthesized and characterized (Park et al. 2008; Galezowski et al. 2008; Gupta et al., 2007).

In the molecular structure of (I), the CoIII ion is coordinated by three O atoms and three N atoms from three bidentate L ligand forming a slightly distorted octahedral geometry (Fig. 1). The Co–X (X = O, N) bond lengths lie in the range 1.878 (2)–1.954 (2) Å, and the angles subtended at the CoIII atom range from 85.61 (9) to 94.25 (10) °. The Co ion is in the 3+ oxidation state, as evidenced by bond valence summation calculations, charge balance considerations, and the presence of typical bond lengths for CoIII (Park, et al. 2008; Galezowski,et al. 2008; Gupta et al., 2007). The water molecule connects two ligands by O–H···O hydrogen bonds (Table 1).

Experimental

Complex I was prepared from a mixture of 2-hydrogen-3-ethoxy-benzaldehyde (0.166 g, 1 mmol), methylamine solution (0.5 ml), Co(ClO4)2.6H2O (0.360 g, 1 mmol), and methanol (8 ml) sealed in a 15 ml Teflon-lined stainless steel bomb, and kept at 120 °C for 72 h under autogenous pressure. After the reaction was slowly cooled to room temperature, red block crystals were produced (yield: 52%, based on 2-hydrogen-3-ethoxy-benzaldehyde). Anal. Calcd for C30H38CoN3O7 (%): C, 58.91; H, 6.26; N, 6.88. Found (%): C, 58.88; H, 6.31; N, 6.92.

Refinement

H atoms were positioned geometrically and were treated as riding atoms, with C–H distances of 0.93–0.97 Å, O–H 0.85 Å with Uiso(H) = 1.2 Ueq(Csp2) and Uiso(H) = 1.5Ueq (Csp3 or O). One terminal methyl group is disordered over two positions with site occupation factors of 0.412 (15) and 0.588 (15), respectively. The displacement parameters of the disordered atoms were restrained to an approximately isotropic behaviour.

Figures

Fig. 1.
Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

[Co(C10H12NO2)3]·H2OF(000) = 1288
Mr = 611.56Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7434 reflections
a = 14.022 (5) Åθ = 2.8–28.4°
b = 16.969 (6) ŵ = 0.62 mm1
c = 14.233 (5) ÅT = 296 K
β = 117.857 (4)°Block, red
V = 2994.1 (17) Å30.42 × 0.20 × 0.09 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer5317 independent reflections
Radiation source: fine-focus sealed tube3929 reflections with I > 2σ(I)
graphiteRint = 0.035
phi and ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.860, Tmax = 0.944k = −20→19
21931 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0481P)2 + 0.9938P] where P = (Fo2 + 2Fc2)/3
5317 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.31 e Å3
12 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.25696 (2)0.943185 (18)0.22915 (2)0.04238 (12)
C10.45768 (19)0.96749 (15)0.22521 (19)0.0484 (6)
C20.5048 (2)0.89830 (16)0.2845 (2)0.0536 (7)
C30.6109 (2)0.87721 (19)0.3075 (2)0.0698 (9)
H30.64120.83150.34610.084*
C40.6695 (2)0.9220 (2)0.2748 (3)0.0802 (10)
H40.73880.90680.28960.096*
C50.6255 (2)0.9904 (2)0.2193 (3)0.0735 (9)
H50.66661.02170.19830.088*
C60.5225 (2)1.01357 (16)0.1942 (2)0.0560 (7)
C70.4056 (3)1.0805 (2)0.0383 (3)0.0950 (12)
H7A0.35391.03970.03050.142*
H7B0.43991.0657−0.00460.142*
C90.4483 (2)0.84859 (16)0.3222 (2)0.0583 (8)
H90.48580.80480.36110.070*
C100.3095 (3)0.79479 (17)0.3507 (3)0.0754 (9)
H10A0.36470.75620.38710.113*
H10B0.24860.77010.29310.113*
H10C0.28740.81740.39940.113*
C110.19289 (18)0.90745 (15)0.01213 (19)0.0451 (6)
C120.14933 (18)0.98317 (15)−0.02230 (19)0.0469 (6)
C130.1192 (2)1.00754 (18)−0.1260 (2)0.0583 (7)
H130.09031.0576−0.14750.070*
C140.1313 (2)0.9596 (2)−0.1968 (2)0.0673 (8)
H140.11140.9768−0.26550.081*
C150.1737 (2)0.88476 (19)−0.1645 (2)0.0624 (8)
H150.18160.8515−0.21240.075*
C160.2044 (2)0.85881 (16)−0.0627 (2)0.0541 (7)
C170.3562 (3)0.7792 (2)0.0374 (3)0.0882 (11)
H17A0.37570.82040.09050.132*
H17B0.39720.7870−0.00100.132*
C180.3805 (4)0.7025 (3)0.0884 (4)0.1320 (17)
H18A0.33970.69520.12640.198*
H18B0.45610.69930.13720.198*
H18C0.36170.66210.03550.198*
C190.12739 (19)1.03513 (14)0.0451 (2)0.0484 (6)
H190.08431.07870.01250.058*
C200.1228 (2)1.08673 (15)0.1956 (2)0.0552 (7)
H20A0.18191.12010.24070.083*
H20B0.09501.06040.23740.083*
H20C0.06691.11810.14200.083*
C210.1177 (2)0.90195 (14)0.32031 (19)0.0456 (6)
C220.1746 (2)0.95016 (15)0.4104 (2)0.0514 (7)
C230.1439 (3)0.95312 (17)0.4916 (2)0.0644 (8)
H230.18140.98580.55000.077*
C240.0613 (3)0.90943 (19)0.4861 (2)0.0690 (8)
H240.04110.91280.53960.083*
C250.0061 (2)0.85931 (16)0.4001 (2)0.0616 (7)
H25−0.05010.82860.39710.074*
C260.0336 (2)0.85452 (15)0.3196 (2)0.0504 (6)
C27−0.0963 (3)0.75265 (17)0.2315 (2)0.0699 (8)
H27A−0.15730.78240.22710.105*
H27B−0.06710.72130.29600.105*
C28−0.1311 (3)0.7007 (2)0.1376 (3)0.0891 (11)
H28A−0.16210.73200.07410.134*
H28B−0.18380.66390.13600.134*
H28C−0.06990.67240.14180.134*
C290.2648 (2)0.99735 (16)0.4233 (2)0.0556 (7)
H290.29721.02750.48490.067*
C300.3961 (2)1.05901 (18)0.3891 (3)0.0714 (9)
H30A0.40841.08670.45260.107*
H30B0.37821.09610.33230.107*
H30C0.46021.03070.40120.107*
N10.35163 (18)0.85684 (12)0.30894 (16)0.0514 (5)
N20.16059 (15)1.02795 (11)0.14483 (16)0.0435 (5)
N30.30595 (16)1.00281 (12)0.35992 (17)0.0505 (5)
O10.36036 (12)0.99193 (9)0.19967 (13)0.0493 (4)
O20.48376 (15)1.08425 (12)0.14429 (17)0.0684 (6)
O30.21754 (13)0.87875 (9)0.10683 (12)0.0486 (4)
O40.24247 (16)0.78279 (11)−0.03486 (15)0.0663 (5)
O50.13858 (13)0.89719 (9)0.23996 (13)0.0475 (4)
O6−0.01521 (15)0.80540 (10)0.23346 (14)0.0584 (5)
O1W0.0519 (2)0.76823 (16)0.0638 (2)0.1173 (10)
H1WA0.11120.79070.07770.176*
H1WB0.04680.76640.12140.176*
C80.3302 (13)1.1506 (9)0.0252 (13)0.110 (3)0.412 (15)
H8A0.27031.13270.03470.165*0.412 (15)
H8B0.30411.1727−0.04460.165*0.412 (15)
H8C0.36931.19010.07750.165*0.412 (15)
C8'0.3642 (9)1.1540 (6)−0.0134 (9)0.110 (3)0.588 (15)
H8'A0.41681.1790−0.02870.165*0.588 (15)
H8'B0.34871.18740.03230.165*0.588 (15)
H8'C0.29931.1451−0.07840.165*0.588 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.04589 (19)0.03229 (19)0.03721 (19)0.00247 (14)0.00959 (14)−0.00092 (14)
C10.0427 (14)0.0450 (15)0.0415 (14)0.0012 (11)0.0063 (11)−0.0116 (11)
C20.0462 (14)0.0468 (16)0.0471 (15)0.0083 (12)0.0045 (12)−0.0074 (13)
C30.0526 (17)0.0628 (19)0.065 (2)0.0147 (15)0.0036 (15)−0.0126 (16)
C40.0423 (16)0.089 (3)0.088 (2)0.0107 (17)0.0131 (17)−0.022 (2)
C50.0472 (16)0.082 (2)0.082 (2)−0.0067 (16)0.0221 (15)−0.0183 (19)
C60.0468 (15)0.0523 (17)0.0553 (17)−0.0053 (12)0.0123 (13)−0.0132 (13)
C70.091 (3)0.080 (2)0.079 (3)−0.006 (2)0.010 (2)0.005 (2)
C90.0626 (18)0.0465 (16)0.0420 (15)0.0183 (14)0.0046 (13)−0.0014 (12)
C100.101 (2)0.0520 (18)0.077 (2)0.0271 (17)0.0448 (19)0.0278 (16)
C110.0425 (13)0.0451 (14)0.0374 (14)−0.0065 (11)0.0101 (11)−0.0028 (12)
C120.0384 (12)0.0487 (15)0.0412 (14)−0.0022 (11)0.0082 (11)0.0031 (12)
C130.0508 (15)0.0639 (18)0.0447 (16)−0.0012 (13)0.0095 (13)0.0111 (14)
C140.0594 (17)0.089 (2)0.0431 (16)−0.0056 (16)0.0151 (14)0.0104 (16)
C150.0616 (17)0.078 (2)0.0435 (16)−0.0102 (15)0.0213 (14)−0.0110 (15)
C160.0540 (15)0.0520 (17)0.0472 (16)−0.0055 (12)0.0161 (13)−0.0054 (13)
C170.097 (3)0.070 (2)0.082 (2)0.0242 (19)0.029 (2)−0.0117 (19)
C180.146 (4)0.102 (3)0.136 (4)0.039 (3)0.055 (3)0.041 (3)
C190.0393 (13)0.0409 (14)0.0512 (17)0.0029 (10)0.0097 (12)0.0071 (12)
C200.0560 (15)0.0399 (14)0.0639 (18)0.0072 (12)0.0232 (14)−0.0006 (13)
C210.0536 (14)0.0365 (14)0.0390 (14)0.0087 (11)0.0151 (12)0.0041 (11)
C220.0596 (16)0.0447 (15)0.0424 (15)0.0068 (12)0.0177 (13)−0.0027 (12)
C230.080 (2)0.0571 (18)0.0532 (18)0.0083 (15)0.0281 (16)−0.0088 (14)
C240.090 (2)0.067 (2)0.0576 (19)0.0080 (18)0.0416 (17)−0.0022 (16)
C250.0729 (19)0.0503 (17)0.0662 (19)0.0057 (14)0.0364 (16)0.0074 (15)
C260.0601 (16)0.0382 (14)0.0457 (15)0.0055 (12)0.0186 (13)0.0061 (12)
C270.0747 (19)0.0583 (19)0.070 (2)−0.0154 (15)0.0278 (16)0.0028 (16)
C280.095 (3)0.076 (2)0.083 (2)−0.0341 (19)0.031 (2)−0.0142 (19)
C290.0616 (17)0.0471 (16)0.0433 (16)0.0008 (13)0.0122 (14)−0.0111 (12)
C300.0659 (18)0.069 (2)0.067 (2)−0.0190 (15)0.0213 (15)−0.0273 (16)
N10.0646 (14)0.0390 (12)0.0384 (12)0.0099 (10)0.0137 (10)0.0026 (9)
N20.0417 (11)0.0325 (11)0.0474 (13)−0.0011 (8)0.0132 (10)0.0001 (9)
N30.0500 (12)0.0426 (12)0.0448 (12)−0.0006 (10)0.0102 (10)−0.0085 (10)
O10.0423 (9)0.0417 (10)0.0525 (10)0.0045 (7)0.0126 (8)0.0039 (8)
O20.0624 (12)0.0585 (12)0.0731 (14)−0.0073 (10)0.0224 (11)−0.0016 (11)
O30.0635 (11)0.0344 (9)0.0394 (10)0.0011 (8)0.0170 (8)−0.0007 (7)
O40.0811 (14)0.0505 (12)0.0580 (12)−0.0003 (10)0.0247 (11)−0.0132 (9)
O50.0579 (10)0.0390 (10)0.0387 (9)−0.0051 (8)0.0167 (8)−0.0030 (8)
O60.0678 (12)0.0476 (11)0.0572 (11)−0.0114 (9)0.0270 (10)−0.0023 (9)
O1W0.137 (2)0.126 (2)0.1031 (19)−0.0782 (19)0.0675 (18)−0.0525 (17)
C80.108 (5)0.083 (3)0.097 (5)0.009 (4)0.013 (3)0.016 (4)
C8'0.108 (5)0.083 (3)0.097 (5)0.009 (4)0.013 (3)0.016 (4)

Geometric parameters (Å, °)

Co1—O11.8792 (18)C17—H17B0.9700
Co1—O51.9044 (18)C18—H18A0.9600
Co1—O31.9061 (17)C18—H18B0.9600
Co1—N31.940 (2)C18—H18C0.9600
Co1—N11.947 (2)C19—N21.276 (3)
Co1—N21.954 (2)C19—H190.9300
C1—O11.305 (3)C20—N21.468 (3)
C1—C21.416 (4)C20—H20A0.9600
C1—C61.416 (4)C20—H20B0.9600
C2—C31.411 (4)C20—H20C0.9600
C2—C91.423 (4)C21—O51.309 (3)
C3—C41.352 (5)C21—C221.412 (3)
C3—H30.9300C21—C261.424 (4)
C4—C51.376 (5)C22—C231.411 (4)
C4—H40.9300C22—C291.434 (4)
C5—C61.374 (4)C23—C241.347 (4)
C5—H50.9300C23—H230.9300
C6—O21.370 (3)C24—C251.391 (4)
C7—O21.391 (4)C24—H240.9300
C7—C81.546 (16)C25—C261.371 (4)
C7—C8'1.427 (10)C25—H250.9300
C7—H7A0.9700C26—O61.372 (3)
C7—H7B0.9700C27—O61.437 (3)
C9—N11.286 (3)C27—C281.481 (4)
C9—H90.9300C27—H27A0.9700
C10—N11.463 (4)C27—H27B0.9700
C10—H10A0.9600C28—H28A0.9600
C10—H10B0.9600C28—H28B0.9600
C10—H10C0.9600C28—H28C0.9600
C11—O31.318 (3)C29—N31.281 (3)
C11—C121.409 (3)C29—H290.9300
C11—C161.415 (4)C30—N31.480 (3)
C12—C131.395 (4)C30—H30A0.9600
C12—C191.438 (4)C30—H30B0.9600
C13—C141.365 (4)C30—H30C0.9600
C13—H130.9300O1W—H1WA0.8507
C14—C151.386 (4)O1W—H1WB0.8550
C14—H140.9300C8—H8A0.9600
C15—C161.377 (4)C8—H8B0.9600
C15—H150.9300C8—H8C0.9600
C16—O41.381 (3)C8'—H8'A0.9600
C17—O41.439 (4)C8'—H8'B0.9600
C17—C181.452 (5)C8'—H8'C0.9600
C17—H17A0.9700
O1—Co1—O5172.32 (7)H18A—C18—H18C109.5
O1—Co1—O388.46 (8)H18B—C18—H18C109.5
O5—Co1—O386.96 (7)N2—C19—C12127.1 (2)
O1—Co1—N391.17 (9)N2—C19—H19116.5
O5—Co1—N393.87 (9)C12—C19—H19116.5
O3—Co1—N3175.49 (8)N2—C20—H20A109.5
O1—Co1—N194.28 (9)N2—C20—H20B109.5
O5—Co1—N191.54 (9)H20A—C20—H20B109.5
O3—Co1—N185.92 (8)N2—C20—H20C109.5
N3—Co1—N189.63 (9)H20A—C20—H20C109.5
O1—Co1—N285.59 (8)H20B—C20—H20C109.5
O5—Co1—N288.43 (8)O5—C21—C22124.5 (2)
O3—Co1—N292.24 (8)O5—C21—C26118.8 (2)
N3—Co1—N292.21 (9)C22—C21—C26116.7 (3)
N1—Co1—N2178.15 (9)C23—C22—C21120.3 (3)
O1—C1—C2124.5 (3)C23—C22—C29117.6 (3)
O1—C1—C6118.5 (2)C21—C22—C29122.1 (3)
C2—C1—C6117.0 (2)C24—C23—C22121.1 (3)
C3—C2—C1119.8 (3)C24—C23—H23119.5
C3—C2—C9118.3 (3)C22—C23—H23119.5
C1—C2—C9121.9 (2)C23—C24—C25119.8 (3)
C4—C3—C2121.4 (3)C23—C24—H24120.1
C4—C3—H3119.3C25—C24—H24120.1
C2—C3—H3119.3C26—C25—C24121.0 (3)
C3—C4—C5119.4 (3)C26—C25—H25119.5
C3—C4—H4120.3C24—C25—H25119.5
C5—C4—H4120.3C25—C26—O6124.4 (3)
C6—C5—C4121.6 (3)C25—C26—C21121.0 (3)
C6—C5—H5119.2O6—C26—C21114.6 (2)
C4—C5—H5119.2O6—C27—C28108.2 (3)
O2—C6—C5119.9 (3)O6—C27—H27A110.1
O2—C6—C1119.2 (2)C28—C27—H27A110.1
C5—C6—C1120.7 (3)O6—C27—H27B110.1
O2—C7—C8104.0 (6)C28—C27—H27B110.1
O2—C7—C8'116.3 (5)H27A—C27—H27B108.4
O2—C7—H7A108.9C27—C28—H28A109.5
C8—C7—H7A95.8C27—C28—H28B109.5
C8'—C7—H7A117.5H28A—C28—H28B109.5
O2—C7—H7B108.9C27—C28—H28C109.5
C8—C7—H7B129.5H28A—C28—H28C109.5
C8'—C7—H7B96.0H28B—C28—H28C109.5
H7A—C7—H7B107.9N3—C29—C22127.6 (2)
N1—C9—C2128.0 (2)N3—C29—H29116.2
N1—C9—H9116.0C22—C29—H29116.2
C2—C9—H9116.0N3—C30—H30A109.5
N1—C10—H10A109.5N3—C30—H30B109.5
N1—C10—H10B109.5H30A—C30—H30B109.5
H10A—C10—H10B109.5N3—C30—H30C109.5
N1—C10—H10C109.5H30A—C30—H30C109.5
H10A—C10—H10C109.5H30B—C30—H30C109.5
H10B—C10—H10C109.5C9—N1—C10117.4 (2)
O3—C11—C12123.8 (2)C9—N1—Co1123.5 (2)
O3—C11—C16119.1 (2)C10—N1—Co1118.94 (19)
C12—C11—C16117.0 (2)C19—N2—C20117.0 (2)
C13—C12—C11120.4 (3)C19—N2—Co1122.78 (18)
C13—C12—C19118.1 (2)C20—N2—Co1120.17 (17)
C11—C12—C19121.4 (2)C29—N3—C30117.1 (2)
C14—C13—C12121.6 (3)C29—N3—Co1124.30 (18)
C14—C13—H13119.2C30—N3—Co1118.6 (2)
C12—C13—H13119.2C1—O1—Co1127.84 (17)
C13—C14—C15118.9 (3)C6—O2—C7116.3 (2)
C13—C14—H14120.6C11—O3—Co1123.20 (15)
C15—C14—H14120.6C16—O4—C17113.3 (2)
C16—C15—C14121.1 (3)C21—O5—Co1127.20 (15)
C16—C15—H15119.4C26—O6—C27117.1 (2)
C14—C15—H15119.4H1WA—O1W—H1WB107.7
C15—C16—O4119.3 (3)C7—C8—H8A109.5
C15—C16—C11121.0 (3)C7—C8—H8B109.5
O4—C16—C11119.6 (2)H8A—C8—H8B109.5
O4—C17—C18108.6 (3)C7—C8—H8C109.5
O4—C17—H17A110.0H8A—C8—H8C109.5
C18—C17—H17A110.0H8B—C8—H8C109.5
O4—C17—H17B110.0C7—C8'—H8'A109.5
C18—C17—H17B110.0C7—C8'—H8'B109.5
H17A—C17—H17B108.4H8'A—C8'—H8'B109.5
C17—C18—H18A109.5C7—C8'—H8'C109.5
C17—C18—H18B109.5H8'A—C8'—H8'C109.5
H18A—C18—H18B109.5H8'B—C8'—H8'C109.5
C17—C18—H18C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.852.012.821 (3)159
O1W—H1WB···O60.852.243.038 (3)155

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5367).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Galezowski, W., Kuta, J. & Kozlowski, P. M. (2008). J. Phys. Chem. B, 112, 3177–3183. [PubMed]
  • Gupta, S. K., Hitchcock, P. B., Kushwah, Y. S. & Argal, G. S. (2007). Inorg. Chim. Acta, 360, 2145–2152.
  • Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev.252, 1420–1450.
  • Park, J., Lang, K., Abboud, K. A. & Hong, S. (2008). J. Am. Chem. Soc.130, 16484–16485. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.
  • Zhang, S. H. & Feng, C. (2010). J. Mol. Struct.977, 62–66.
  • Zhang, S. H., Song, Y., Liang, H. & Zeng, M. H. (2009). CrystEngComm, 11, 865–872.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography