PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3015.
Published online 2010 October 31. doi:  10.1107/S1600536810043606
PMCID: PMC3009186

(E)-3-(2,4-Dimeth­oxy­phen­yl)-1-(3,4-dimeth­oxy­phen­yl)prop-2-en-1-one

Abstract

The title compound, C19H20O5, is approximately planar; the dihedral angle between the benzene rings is 3.82 (8)°, and the central propenone C(=O)—C=C plane makes dihedral angles of 1.95 (10) and 3.17 (11)° with the two benzene rings. In the crystal structure, intra- and inter­molecular C—H(...)O hydrogen bonds are observed.

Related literature

For related structures, see: Huang et al. (2010 [triangle]); Peng et al. (2010 [triangle]); Yathirajan et al. (2006 [triangle]); Zhao et al. (2010 [triangle]). For background to and applications of chalcones, see: Liang et al. (2007 [triangle]); Liu et al. (2008 [triangle]); Mojzisa et al. (2008 [triangle]); Nielsen et al. (2005 [triangle]); Nowakowska (2007 [triangle]); Selvakumar et al. (2007 [triangle]); Wu et al. (2010 [triangle]); Wu, Chen et al. (2009 [triangle]); Wu, Qiu et al. (2009 [triangle]); Wu, Zhang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3015-scheme1.jpg

Experimental

Crystal data

  • C19H20O5
  • M r = 328.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3015-efi1.jpg
  • a = 9.031 (5) Å
  • b = 7.962 (5) Å
  • c = 23.631 (14) Å
  • β = 92.827 (10)°
  • V = 1697.0 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.47 × 0.35 × 0.31 mm

Data collection

  • Bruker APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.958, T max = 0.972
  • 8581 measured reflections
  • 2981 independent reflections
  • 2407 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.119
  • S = 1.04
  • 2981 reflections
  • 222 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043606/is2604sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043606/is2604Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y200907137).

supplementary crystallographic information

Comment

Chalcones have the common skeleton of 1,3-diaryl-2-propen-1-ones and belong to the flavonoid family. Chalcones distribute widespread in fruits, vegetables and so on. Like as other flavonoids, chalcones have been reported to possess wide-range biological activities, including antimicrobial, antitumor, anti-inflammatory, antifungal, antioxidant activities and so on (Nowakowska, 2007; Liu et al., 2008; Wu et al., 2010). Moreover, Chalcones belong to nature products and have low toxicity. Owing to its varied pharmacological activities and low toxicity, it has attracted more and more scientists attention and therefore several strategies have been developed to synthesize them (Nowakowska, 2007; Selvakumar et al., 2007; Wu, Chen et al., 2009; Wu, Qiu et al., 2009; Wu, Zhang et al., 2009).

In our effort to develop Chalcones activity, we have synthesized the title chalcone. In order to get detailed information such as the geometrical features and the underlying interaction of the crystal structure, an X-ray study of the title compound was carried out.

Two rings of molecule is approximately planar and the dihedral angle between the two rings is 3.82 (4)°. The average value of exocyclic bond angles [120.8 (5)°] and the bond distances [1.384 (2) Å] in the phenyl rings agree well with the normal values reported in the literature for some analogous structures (Peng et al., 2010; Wu, Chen et al., 2009; Wu, Qiu et al., 2009; Wu, Zhang et al., 2009; Huang et al., 2010; Yathirajan et al., 2006).

Experimental

The title compound was synthesized by Claisene–Schmidt condensation between 2,4-dimethoxybenzaldehyde and 1-(3,4-dimethoxyphenyl)ethanone. 2,4-Dimethoxybenzaldehyde (1 mmol) and 1-(3,4-dimethoxyphenyl)ethanone (1 mmol) were dissolved in ethanol (15 ml). The mixture were controlled at 279 K and then 5 drops NaOH (20%) was added. The reaction was monitored by thin-layer chromatography. 15 ml H2O was added after 10 h and the yellow solid precipitated was washed with water and cold ethanol. It was then dried and purified by column chromatography on silica gel. Single crystals of the title compound were grown in a CH2Cl2/CH3CH2OH mixture (1:1) solution at 279 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 or 0.96 Å, with isotropic displacement parameters 1.2 or 1.5 times Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level.

Crystal data

C19H20O5F(000) = 696
Mr = 328.35Dx = 1.285 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3028 reflections
a = 9.031 (5) Åθ = 2.4–25.4°
b = 7.962 (5) ŵ = 0.09 mm1
c = 23.631 (14) ÅT = 298 K
β = 92.827 (10)°Block, colourless
V = 1697.0 (17) Å30.47 × 0.35 × 0.31 mm
Z = 4

Data collection

Bruker APEX area-detector diffractometer2981 independent reflections
Radiation source: fine-focus sealed tube2407 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.958, Tmax = 0.972k = −7→9
8581 measured reflectionsl = −28→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0641P)2 + 0.1943P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2981 reflectionsΔρmax = 0.14 e Å3
222 parametersΔρmin = −0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.28103 (12)0.90184 (19)0.42954 (5)0.0819 (4)
O20.70723 (11)0.80481 (15)0.32588 (5)0.0638 (3)
O31.12815 (14)0.4756 (2)0.43350 (6)0.0919 (5)
O41.56960 (12)0.36084 (15)0.31617 (5)0.0671 (4)
O51.51234 (12)0.49882 (14)0.21947 (5)0.0609 (3)
C10.2027 (2)0.8905 (3)0.48040 (9)0.0961 (7)
H1A0.19110.77460.49050.144*
H1B0.10680.94140.47460.144*
H1C0.25740.94790.51040.144*
C20.42024 (16)0.8369 (2)0.42967 (7)0.0580 (4)
C30.49109 (19)0.7598 (3)0.47532 (7)0.0698 (5)
H30.44440.74870.50930.084*
C40.63289 (18)0.6990 (2)0.46998 (7)0.0652 (5)
H40.68010.64670.50110.078*
C50.70830 (16)0.71205 (19)0.42044 (7)0.0509 (4)
C60.63254 (15)0.79194 (18)0.37421 (6)0.0482 (4)
C70.49051 (16)0.8529 (2)0.37918 (7)0.0535 (4)
H70.44170.90520.34840.064*
C80.63986 (18)0.8895 (2)0.27838 (7)0.0652 (5)
H8A0.54860.83450.26700.098*
H8B0.70550.88750.24760.098*
H8C0.61991.00380.28840.098*
C90.85599 (16)0.6388 (2)0.41978 (7)0.0556 (4)
H90.89060.59350.45420.067*
C100.94973 (16)0.6258 (2)0.37837 (7)0.0560 (4)
H100.92390.67030.34290.067*
C111.09404 (17)0.5415 (2)0.38803 (7)0.0577 (4)
C121.19894 (16)0.53612 (18)0.34148 (6)0.0490 (4)
C131.17154 (16)0.61029 (19)0.28937 (7)0.0534 (4)
H131.08320.66820.28220.064*
C141.27305 (17)0.60041 (19)0.24734 (7)0.0557 (4)
H141.25190.65060.21230.067*
C151.40530 (16)0.51638 (18)0.25735 (7)0.0504 (4)
C161.43577 (15)0.44187 (18)0.31052 (6)0.0493 (4)
C171.33443 (16)0.45188 (19)0.35158 (7)0.0515 (4)
H171.35550.40220.38670.062*
C181.61263 (19)0.2977 (2)0.37027 (8)0.0669 (5)
H18A1.61140.38690.39760.100*
H18B1.71090.25200.36960.100*
H18C1.54490.21110.38050.100*
C191.4842 (2)0.5671 (3)0.16424 (7)0.0703 (5)
H19A1.39400.52040.14780.105*
H19B1.56500.54010.14090.105*
H19C1.47450.68690.16680.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0504 (7)0.1228 (11)0.0734 (9)0.0280 (7)0.0114 (6)−0.0078 (8)
O20.0466 (6)0.0894 (9)0.0563 (7)0.0110 (5)0.0110 (5)0.0148 (6)
O30.0720 (8)0.1376 (13)0.0679 (9)0.0480 (8)0.0213 (7)0.0313 (8)
O40.0547 (7)0.0841 (8)0.0635 (8)0.0250 (6)0.0118 (6)0.0059 (6)
O50.0566 (7)0.0690 (7)0.0584 (7)0.0066 (5)0.0163 (5)0.0010 (5)
C10.0587 (12)0.152 (2)0.0797 (14)0.0236 (12)0.0227 (10)−0.0226 (14)
C20.0426 (8)0.0710 (10)0.0609 (10)0.0082 (7)0.0086 (7)−0.0105 (8)
C30.0573 (10)0.0980 (14)0.0555 (10)0.0150 (9)0.0167 (8)0.0014 (9)
C40.0584 (10)0.0837 (12)0.0541 (10)0.0146 (9)0.0096 (8)0.0066 (9)
C50.0459 (8)0.0538 (9)0.0534 (9)0.0033 (7)0.0081 (7)−0.0011 (7)
C60.0417 (8)0.0509 (8)0.0526 (9)−0.0013 (6)0.0072 (7)−0.0032 (7)
C70.0446 (8)0.0592 (9)0.0564 (9)0.0043 (7)0.0001 (7)−0.0016 (7)
C80.0560 (10)0.0859 (12)0.0536 (10)0.0003 (9)0.0032 (8)0.0061 (9)
C90.0493 (9)0.0599 (9)0.0578 (10)0.0071 (7)0.0041 (7)0.0040 (7)
C100.0471 (9)0.0633 (10)0.0578 (10)0.0086 (7)0.0059 (7)0.0015 (8)
C110.0508 (9)0.0665 (10)0.0561 (10)0.0120 (7)0.0068 (7)0.0032 (8)
C120.0435 (8)0.0489 (8)0.0548 (9)0.0034 (6)0.0044 (7)−0.0046 (7)
C130.0450 (8)0.0538 (9)0.0616 (10)0.0088 (7)0.0045 (7)0.0006 (7)
C140.0555 (9)0.0579 (9)0.0539 (9)0.0054 (7)0.0050 (7)0.0048 (7)
C150.0486 (9)0.0483 (8)0.0549 (9)−0.0010 (6)0.0103 (7)−0.0056 (7)
C160.0437 (8)0.0475 (8)0.0570 (9)0.0067 (6)0.0059 (7)−0.0046 (7)
C170.0491 (8)0.0540 (9)0.0515 (9)0.0065 (7)0.0032 (7)−0.0009 (7)
C180.0581 (10)0.0706 (11)0.0717 (12)0.0165 (8)0.0009 (8)0.0029 (9)
C190.0722 (11)0.0831 (12)0.0566 (10)0.0015 (10)0.0141 (8)0.0019 (9)

Geometric parameters (Å, °)

O1—C21.3593 (19)C8—H8B0.9600
O1—C11.427 (2)C8—H8C0.9600
O2—C61.3586 (18)C9—C101.329 (2)
O2—C81.420 (2)C9—H90.9300
O3—C111.222 (2)C10—C111.473 (2)
O4—C161.3707 (18)C10—H100.9300
O4—C181.410 (2)C11—C121.487 (2)
O5—C151.3567 (17)C12—C131.377 (2)
O5—C191.425 (2)C12—C171.405 (2)
C1—H1A0.9600C13—C141.387 (2)
C1—H1B0.9600C13—H130.9300
C1—H1C0.9600C14—C151.379 (2)
C2—C31.372 (3)C14—H140.9300
C2—C71.385 (2)C15—C161.404 (2)
C3—C41.381 (2)C16—C171.369 (2)
C3—H30.9300C17—H170.9300
C4—C51.387 (2)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.412 (2)C18—H18C0.9600
C5—C91.456 (2)C19—H19A0.9600
C6—C71.382 (2)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—H8A0.9600
C2—O1—C1118.09 (15)C9—C10—C11120.80 (15)
C6—O2—C8119.28 (12)C9—C10—H10119.6
C16—O4—C18117.28 (12)C11—C10—H10119.6
C15—O5—C19117.65 (13)O3—C11—C10120.98 (14)
O1—C1—H1A109.5O3—C11—C12119.72 (14)
O1—C1—H1B109.5C10—C11—C12119.30 (14)
H1A—C1—H1B109.5C13—C12—C17118.23 (14)
O1—C1—H1C109.5C13—C12—C11123.79 (14)
H1A—C1—H1C109.5C17—C12—C11117.98 (14)
H1B—C1—H1C109.5C12—C13—C14121.35 (14)
O1—C2—C3124.58 (15)C12—C13—H13119.3
O1—C2—C7115.21 (15)C14—C13—H13119.3
C3—C2—C7120.21 (14)C15—C14—C13120.14 (15)
C2—C3—C4118.93 (16)C15—C14—H14119.9
C2—C3—H3120.5C13—C14—H14119.9
C4—C3—H3120.5O5—C15—C14125.17 (15)
C3—C4—C5123.17 (16)O5—C15—C16115.61 (13)
C3—C4—H4118.4C14—C15—C16119.23 (13)
C5—C4—H4118.4C17—C16—O4125.14 (14)
C4—C5—C6116.59 (14)C17—C16—C15120.09 (14)
C4—C5—C9117.84 (14)O4—C16—C15114.77 (12)
C6—C5—C9125.54 (14)C16—C17—C12120.96 (15)
O2—C6—C7123.12 (14)C16—C17—H17119.5
O2—C6—C5116.28 (13)C12—C17—H17119.5
C7—C6—C5120.60 (14)O4—C18—H18A109.5
C6—C7—C2120.51 (15)O4—C18—H18B109.5
C6—C7—H7119.7H18A—C18—H18B109.5
C2—C7—H7119.7O4—C18—H18C109.5
O2—C8—H8A109.5H18A—C18—H18C109.5
O2—C8—H8B109.5H18B—C18—H18C109.5
H8A—C8—H8B109.5O5—C19—H19A109.5
O2—C8—H8C109.5O5—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19B109.5
H8B—C8—H8C109.5O5—C19—H19C109.5
C10—C9—C5131.00 (16)H19A—C19—H19C109.5
C10—C9—H9114.5H19B—C19—H19C109.5
C5—C9—H9114.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.463.363 (3)162
C8—H8B···O4ii0.962.603.537 (3)166
C10—H10···O20.932.252.846 (3)121
C19—H19A···O1iii0.962.543.443 (3)157

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+5/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2604).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518. [PMC free article] [PubMed]
  • Liang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007). Acta Cryst. E63, o3630.
  • Liu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem.43, 1681–1687. [PubMed]
  • Mojzisa, J., Varinskaa, L., Mojzisovab, G., Kostovac, I. & Mirossaya, L. (2008). Pharmacol. Res.57, 259–265.
  • Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem.48, 2667–2677. [PubMed]
  • Nowakowska, Z. (2007). Eur. J. Med. Chem.42, 125–137. [PubMed]
  • Peng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156–o1157. [PMC free article] [PubMed]
  • Selvakumar, N., Kumar, G. S., Azhagan, A. M., Rajulu, G. G., Sharma, S., Kumar, M. S., Das, J., Iqbal, J. & &Trehan, S. (2007). Eur. J. Med. Chem.42, 538–543. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, J. Z., Chen, X., Wang, X. Q., Zhou, P., Liang, G., Li, X. K. & Qiu, P. H. (2009). Chin. Pharm. J.44, 1830–32.
  • Wu, J. Z., Qiu, P. H., Li, Y., Yang, X. F., Li, L. & Ai, C. C. (2009). Chem. Nat. Compd.45, 572–574.
  • Wu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem.30, 884–889.
  • Wu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805. [PMC free article] [PubMed]
  • Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629–o3630.
  • Zhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Li, X. X., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem.18, 2388–2393. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography