PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1484.
Published online 2010 October 30. doi:  10.1107/S1600536810043229
PMCID: PMC3009171

Bis(μ-3-nitro­phthalato-κ2 O 1:O 2)bis­[aqua­(2,2′-bipyridine-κ2 N,N′)copper(II)] dihydrate

Abstract

Two 3-nitro­phthalate dianions bridge two water-coordinated 2,2′-bipyridine-chelated CuII atoms about a center of inversion to generate the title dinuclear compound, [Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2O. The geometry of the CuII atom is a distorted square pyramid. Adjacent mol­ecules are linked through the coordinated and solvent water mol­ecules to form a linear ribbon running along the a axis of the monoclinic unit cell.

Related literature

For the isostructural zinc analog, see: Song et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1484-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2O
  • M r = 929.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1484-efi1.jpg
  • a = 7.534 (2) Å
  • b = 10.467 (3) Å
  • c = 12.044 (3) Å
  • α = 87.835 (2)°
  • β = 74.911 (3)°
  • γ = 77.437 (3)°
  • V = 894.9 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 295 K
  • 0.45 × 0.45 × 0.40 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.591, T max = 0.629
  • 4675 measured reflections
  • 3092 independent reflections
  • 2732 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.088
  • S = 1.01
  • 3092 reflections
  • 284 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043229/xu5061sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043229/xu5061Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Key Research Project, Baoji University of Arts and Sciences (grant No. ZK08114), and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Dinuclear Zn2(H2O)2(C10H8N2)2(C8H3NO6)2.2H2O is reported to exhibit intense fluorescence. In its crystal structure, the 3-nitrophthalate dianion bridges two water-coordinated, 2,2'-bipyridine-chelated zinc atoms about a center-of-inversion; the geometry of the zinc atom is a square pyramid (Song et al., 2007). The present copper analog (Scheme I, Fig. 1) is isostructural, the two compounds crystallizing with matching cell dimensions. Adjacent molecules are connected to the lattice water molecule by hydrogen bonds to form a linear ribbon running along the a-axis of the monoclinic unit cell (Fig. 2).

Experimental

3-Nitrophthalic acid (0.105 g), 2,2'-bipyridine (0.078 g), copper chloride dihydrate (0.085 g) and water (2 ml) were heated at 393 K in a 25 ml, Teflon-lined, stainless-steel Parr bomb for 3 days. Blue crystal were isolated. CH&N elemental analysis. Found: C 46.32, H 3.17, N 9.11%. Calc.: C 46.51, H 3.25, N 9.04%.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and H···H 1.37±0.01 Å; their temperature factors were refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of dinuclear Cu2(H2O)2(C10H8N2)2(C8H3NO6)2.2H2O at the 50% probability evel; hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
Hydrogen-bonded chain.

Crystal data

[Cu2(C8H3NO6)2(C10H8N2)2(H2O)2]·2H2OZ = 1
Mr = 929.74F(000) = 474
Triclinic, P1Dx = 1.725 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.534 (2) ÅCell parameters from 3039 reflections
b = 10.467 (3) Åθ = 2.6–28.1°
c = 12.044 (3) ŵ = 1.28 mm1
α = 87.835 (2)°T = 295 K
β = 74.911 (3)°Block, blue
γ = 77.437 (3)°0.45 × 0.45 × 0.40 mm
V = 894.9 (4) Å3

Data collection

Bruker SMART APEX diffractometer3092 independent reflections
Radiation source: fine-focus sealed tube2732 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→8
Tmin = 0.591, Tmax = 0.629k = −11→12
4675 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088w = 1/[σ2(Fo2) + (0.0456P)2 + 0.6587P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3092 reflectionsΔρmax = 0.54 e Å3
284 parametersΔρmin = −0.55 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.21328 (4)0.56513 (3)0.71332 (2)0.02412 (15)
N10.4799 (3)0.0616 (2)0.2658 (2)0.0343 (6)
N20.2998 (3)0.4783 (2)0.84926 (18)0.0257 (5)
N30.0759 (3)0.7029 (2)0.83612 (19)0.0281 (5)
O10.3115 (3)0.41035 (18)0.61015 (15)0.0280 (4)
O20.0466 (3)0.3577 (2)0.71082 (17)0.0409 (5)
O30.5866 (2)0.32313 (18)0.38170 (15)0.0288 (4)
O40.3075 (3)0.39837 (18)0.34247 (16)0.0305 (4)
O50.5574 (4)0.1439 (2)0.2160 (2)0.0633 (8)
O60.4884 (5)−0.0410 (3)0.2191 (2)0.0874 (11)
O1W0.0433 (3)0.6507 (2)0.61730 (16)0.0332 (5)
H110.105 (4)0.646 (3)0.5489 (12)0.050*
H12−0.056 (3)0.625 (3)0.626 (2)0.050*
O2W0.2753 (3)0.6602 (2)0.41019 (18)0.0385 (5)
H210.279 (4)0.593 (2)0.374 (3)0.058*
H220.372 (3)0.650 (3)0.435 (3)0.058*
C10.1932 (4)0.3366 (3)0.6318 (2)0.0256 (6)
C20.2383 (4)0.2132 (2)0.5588 (2)0.0230 (5)
C30.1636 (4)0.1084 (3)0.6101 (2)0.0333 (7)
H30.08900.11790.68540.040*
C40.1973 (4)−0.0096 (3)0.5522 (3)0.0389 (7)
H40.1505−0.07950.58920.047*
C50.3010 (4)−0.0224 (3)0.4391 (3)0.0350 (7)
H50.3223−0.10020.39810.042*
C60.3725 (4)0.0823 (3)0.3879 (2)0.0257 (6)
C70.3471 (3)0.2024 (2)0.4442 (2)0.0210 (5)
C80.4222 (4)0.3186 (2)0.3836 (2)0.0213 (5)
C90.4136 (4)0.3603 (3)0.8485 (2)0.0330 (6)
H90.46840.31470.77890.040*
C100.4522 (4)0.3043 (3)0.9478 (3)0.0379 (7)
H100.53330.22290.94450.045*
C110.3696 (4)0.3698 (3)1.0513 (3)0.0383 (7)
H11A0.39340.33321.11890.046*
C120.2507 (4)0.4911 (3)1.0534 (2)0.0340 (7)
H12A0.19210.53691.12250.041*
C130.2199 (4)0.5435 (3)0.9505 (2)0.0266 (6)
C140.0971 (4)0.6732 (3)0.9424 (2)0.0281 (6)
C150.0074 (4)0.7584 (3)1.0353 (3)0.0395 (7)
H150.02440.73681.10800.047*
C16−0.1067 (5)0.8752 (3)1.0185 (3)0.0474 (8)
H16−0.16910.93321.07990.057*
C17−0.1276 (5)0.9055 (3)0.9093 (3)0.0483 (8)
H17−0.20300.98450.89610.058*
C18−0.0351 (5)0.8171 (3)0.8207 (3)0.0396 (7)
H18−0.05010.83740.74740.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0282 (2)0.0265 (2)0.01756 (19)−0.00328 (14)−0.00774 (13)−0.00078 (12)
N10.0379 (14)0.0317 (14)0.0318 (13)−0.0003 (11)−0.0108 (11)−0.0096 (11)
N20.0292 (12)0.0285 (12)0.0210 (11)−0.0074 (10)−0.0082 (9)−0.0014 (9)
N30.0317 (13)0.0270 (12)0.0242 (11)−0.0058 (10)−0.0051 (10)−0.0004 (9)
O10.0316 (10)0.0304 (10)0.0225 (9)−0.0080 (8)−0.0057 (8)−0.0061 (8)
O20.0400 (12)0.0493 (13)0.0274 (11)−0.0112 (10)0.0044 (9)−0.0098 (9)
O30.0236 (10)0.0363 (11)0.0288 (10)−0.0104 (8)−0.0080 (8)0.0044 (8)
O40.0328 (10)0.0280 (10)0.0334 (10)−0.0040 (8)−0.0167 (9)0.0093 (8)
O50.101 (2)0.0467 (15)0.0320 (12)−0.0231 (15)0.0086 (13)−0.0070 (11)
O60.125 (3)0.0627 (18)0.0617 (18)−0.0406 (19)0.0202 (18)−0.0405 (15)
O1W0.0281 (11)0.0455 (12)0.0278 (10)−0.0052 (9)−0.0125 (9)0.0023 (9)
O2W0.0421 (12)0.0405 (12)0.0355 (12)−0.0119 (10)−0.0121 (10)−0.0007 (9)
C10.0316 (15)0.0300 (14)0.0164 (12)−0.0039 (12)−0.0108 (11)0.0031 (10)
C20.0227 (13)0.0254 (13)0.0219 (13)−0.0026 (11)−0.0097 (11)0.0020 (10)
C30.0349 (16)0.0368 (16)0.0281 (14)−0.0098 (13)−0.0073 (12)0.0056 (12)
C40.0441 (18)0.0285 (16)0.0461 (18)−0.0150 (14)−0.0102 (15)0.0105 (13)
C50.0362 (16)0.0225 (14)0.0489 (18)−0.0047 (12)−0.0167 (14)−0.0022 (13)
C60.0237 (13)0.0263 (14)0.0273 (14)0.0000 (11)−0.0107 (11)−0.0033 (11)
C70.0195 (12)0.0221 (13)0.0234 (13)−0.0014 (10)−0.0116 (10)0.0015 (10)
C80.0264 (14)0.0238 (13)0.0145 (11)−0.0053 (11)−0.0062 (10)−0.0023 (10)
C90.0373 (16)0.0332 (16)0.0279 (14)−0.0022 (13)−0.0114 (12)−0.0013 (12)
C100.0413 (17)0.0339 (16)0.0432 (17)−0.0056 (13)−0.0223 (14)0.0079 (13)
C110.0442 (18)0.0487 (19)0.0295 (15)−0.0182 (15)−0.0178 (14)0.0138 (13)
C120.0375 (16)0.0489 (18)0.0206 (13)−0.0177 (14)−0.0094 (12)0.0010 (12)
C130.0285 (14)0.0326 (15)0.0217 (13)−0.0120 (12)−0.0072 (11)−0.0002 (11)
C140.0280 (14)0.0323 (15)0.0252 (14)−0.0121 (12)−0.0041 (11)−0.0018 (11)
C150.0438 (18)0.0445 (18)0.0281 (15)−0.0139 (15)−0.0007 (13)−0.0085 (13)
C160.049 (2)0.0407 (19)0.0447 (19)−0.0076 (16)0.0027 (16)−0.0164 (15)
C170.048 (2)0.0313 (17)0.058 (2)−0.0008 (15)−0.0065 (17)−0.0074 (15)
C180.0457 (18)0.0313 (16)0.0382 (17)−0.0026 (14)−0.0096 (14)0.0018 (13)

Geometric parameters (Å, °)

Cu1—O11.967 (2)C3—H30.9300
Cu1—O3i2.172 (2)C4—C51.378 (4)
Cu1—O1w1.994 (2)C4—H40.9300
Cu1—N22.029 (2)C5—C61.380 (4)
Cu1—N32.013 (2)C5—H50.9300
N1—O51.199 (3)C6—C71.403 (4)
N1—O61.213 (3)C7—C81.533 (3)
N1—C61.480 (4)C9—C101.383 (4)
N2—C131.348 (3)C9—H90.9300
N2—C91.340 (4)C10—C111.373 (4)
N3—C181.339 (4)C10—H100.9300
N3—C141.347 (4)C11—C121.382 (4)
O1—C11.274 (3)C11—H11A0.9300
O2—C11.240 (3)C12—C131.390 (4)
O3—C81.244 (3)C12—H12A0.9300
O3—Cu1i2.1722 (18)C13—C141.483 (4)
O4—C81.252 (3)C14—C151.387 (4)
O1W—H110.83 (3)C15—C161.374 (5)
O1W—H120.83 (3)C15—H150.9300
O2W—H210.84 (3)C16—C171.381 (5)
O2W—H220.84 (3)C16—H160.9300
C1—C21.515 (4)C17—C181.374 (4)
C2—C31.393 (4)C17—H170.9300
C2—C71.404 (4)C18—H180.9300
C3—C41.382 (4)
O1—Cu1—O1W92.15 (8)C5—C6—C7124.0 (3)
O1—Cu1—N3168.62 (8)C5—C6—N1115.6 (2)
O1W—Cu1—N388.44 (9)C7—C6—N1120.5 (2)
O1—Cu1—N295.88 (8)C2—C7—C6116.0 (2)
O1W—Cu1—N2160.36 (9)C2—C7—C8121.2 (2)
N3—Cu1—N280.22 (9)C6—C7—C8122.7 (2)
O1—Cu1—O3i95.27 (8)O3—C8—O4128.0 (2)
O1W—Cu1—O3i86.74 (8)O3—C8—C7117.1 (2)
N3—Cu1—O3i96.11 (8)O4—C8—C7114.9 (2)
N2—Cu1—O3i110.24 (8)N2—C9—C10122.1 (3)
O5—N1—O6121.7 (3)N2—C9—H9119.0
O5—N1—C6120.4 (2)C10—C9—H9119.0
O6—N1—C6117.9 (3)C11—C10—C9119.5 (3)
C13—N2—C9118.6 (2)C11—C10—H10120.3
C13—N2—Cu1114.89 (18)C9—C10—H10120.3
C9—N2—Cu1126.25 (18)C10—C11—C12119.0 (3)
C18—N3—C14118.9 (2)C10—C11—H11A120.5
C18—N3—Cu1125.6 (2)C12—C11—H11A120.5
C14—N3—Cu1115.52 (18)C11—C12—C13118.9 (3)
C1—O1—Cu1108.99 (16)C11—C12—H12A120.5
C8—O3—Cu1i134.66 (17)C13—C12—H12A120.5
Cu1—O1W—H11109 (2)N2—C13—C12121.9 (3)
Cu1—O1W—H12116 (2)N2—C13—C14114.5 (2)
H11—O1W—H12112 (2)C12—C13—C14123.6 (2)
H21—O2W—H22109 (2)N3—C14—C15121.4 (3)
O2—C1—O1124.0 (2)N3—C14—C13114.6 (2)
O2—C1—C2118.2 (2)C15—C14—C13124.0 (3)
O1—C1—C2117.7 (2)C16—C15—C14119.2 (3)
C3—C2—C7120.2 (2)C16—C15—H15120.4
C3—C2—C1116.7 (2)C14—C15—H15120.4
C7—C2—C1123.1 (2)C15—C16—C17119.2 (3)
C4—C3—C2121.8 (3)C15—C16—H16120.4
C4—C3—H3119.1C17—C16—H16120.4
C2—C3—H3119.1C18—C17—C16118.9 (3)
C3—C4—C5119.3 (3)C18—C17—H17120.5
C3—C4—H4120.3C16—C17—H17120.5
C5—C4—H4120.3N3—C18—C17122.4 (3)
C6—C5—C4118.8 (3)N3—C18—H18118.8
C6—C5—H5120.6C17—C18—H18118.8
C4—C5—H5120.6
O1—Cu1—N2—C13−164.61 (18)C3—C2—C7—C8176.7 (2)
O1W—Cu1—N2—C13−51.0 (3)C1—C2—C7—C8−2.3 (4)
N3—Cu1—N2—C134.59 (18)C5—C6—C7—C2−1.3 (4)
O3i—Cu1—N2—C1397.54 (19)N1—C6—C7—C2178.2 (2)
O1—Cu1—N2—C99.4 (2)C5—C6—C7—C8−177.7 (2)
O1W—Cu1—N2—C9123.1 (3)N1—C6—C7—C81.8 (4)
N3—Cu1—N2—C9178.6 (2)Cu1i—O3—C8—O4−14.3 (4)
O3i—Cu1—N2—C9−88.4 (2)Cu1i—O3—C8—C7166.26 (16)
O1—Cu1—N3—C18−110.3 (4)C2—C7—C8—O396.7 (3)
O1W—Cu1—N3—C18−17.1 (2)C6—C7—C8—O3−87.1 (3)
N2—Cu1—N3—C18179.0 (3)C2—C7—C8—O4−82.8 (3)
O3i—Cu1—N3—C1869.4 (2)C6—C7—C8—O493.3 (3)
O1—Cu1—N3—C1468.2 (5)C13—N2—C9—C10−0.5 (4)
O1W—Cu1—N3—C14161.3 (2)Cu1—N2—C9—C10−174.3 (2)
N2—Cu1—N3—C14−2.61 (19)N2—C9—C10—C111.1 (5)
O3i—Cu1—N3—C14−112.15 (19)C9—C10—C11—C12−0.5 (5)
O1W—Cu1—O1—C1−79.31 (17)C10—C11—C12—C13−0.7 (4)
N3—Cu1—O1—C113.5 (5)C9—N2—C13—C12−0.7 (4)
N2—Cu1—O1—C182.74 (17)Cu1—N2—C13—C12173.8 (2)
O3i—Cu1—O1—C1−166.23 (16)C9—N2—C13—C14179.8 (2)
Cu1—O1—C1—O2−4.2 (3)Cu1—N2—C13—C14−5.7 (3)
Cu1—O1—C1—C2177.93 (17)C11—C12—C13—N21.3 (4)
O2—C1—C2—C3−26.2 (4)C11—C12—C13—C14−179.3 (3)
O1—C1—C2—C3151.8 (2)C18—N3—C14—C15−0.3 (4)
O2—C1—C2—C7152.9 (2)Cu1—N3—C14—C15−178.9 (2)
O1—C1—C2—C7−29.2 (4)C18—N3—C14—C13178.9 (2)
C7—C2—C3—C41.7 (4)Cu1—N3—C14—C130.4 (3)
C1—C2—C3—C4−179.2 (3)N2—C13—C14—N33.5 (3)
C2—C3—C4—C5−2.8 (5)C12—C13—C14—N3−176.0 (3)
C3—C4—C5—C61.7 (5)N2—C13—C14—C15−177.3 (3)
C4—C5—C6—C70.3 (4)C12—C13—C14—C153.3 (4)
C4—C5—C6—N1−179.2 (3)N3—C14—C15—C160.6 (4)
O5—N1—C6—C5−175.4 (3)C13—C14—C15—C16−178.6 (3)
O6—N1—C6—C53.8 (4)C14—C15—C16—C17−0.8 (5)
O5—N1—C6—C75.1 (4)C15—C16—C17—C180.7 (5)
O6—N1—C6—C7−175.7 (3)C14—N3—C18—C170.3 (5)
C3—C2—C7—C60.3 (4)Cu1—N3—C18—C17178.7 (2)
C1—C2—C7—C6−178.7 (2)C16—C17—C18—N3−0.5 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H11···O2w0.83 (3)1.85 (1)2.660 (3)166 (3)
O1w—H12···O4ii0.83 (3)1.90 (1)2.718 (3)168 (3)
O2w—H21···O40.84 (3)2.04 (2)2.830 (3)158 (3)
O2w—H22···O1i0.84 (3)2.25 (2)2.985 (3)146 (3)
O2w—H22···O3i0.84 (3)2.35 (3)2.977 (3)132 (3)

Symmetry codes: (ii) −x, −y+1, −z+1; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5061).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2003). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Y.-S., Yan, B. & Chen, Z.-X. (2007). Appl. Organomet. Chem.21, 150–155.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography