PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2958.
Published online 2010 October 30. doi:  10.1107/S1600536810042467
PMCID: PMC3009161

7-(4-Methyl­phen­yl)cyclo­penta­[a]quinolizine-10-carbaldehyde

Abstract

In the title compound, C20H15NO, the heterotricycle is essential planar [maximum deviation = 0.0790 (5) Å] and makes a dihedral angle of 50.70 (2)° with the benzene ring. The formyl group is almost coplanar with the tricyclic ring, the C—C—C—O torsion angle being −0.78 (13)°.

Related literature

For background to the Vilsmeier–Haack reaction, see: Laue & Plagens (2005 [triangle]). For a related structure, see: Borisenko et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2958-scheme1.jpg

Experimental

Crystal data

  • C20H15NO
  • M r = 285.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2958-efi1.jpg
  • a = 7.2907 (13) Å
  • b = 8.9627 (14) Å
  • c = 12.0162 (19) Å
  • α = 88.48 (2)°
  • β = 81.400 (19)°
  • γ = 67.821 (18)°
  • V = 718.5 (2) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 0.64 mm−1
  • T = 295 K
  • 0.15 × 0.13 × 0.11 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: refined from ΔF (Walker & Stuart, 1983 [triangle]) T min = 0.649, T max = 1.000
  • 3186 measured reflections
  • 2909 independent reflections
  • 2394 reflections with I > 2σ(I)
  • R int = 0.000 please give correct value
  • 1 standard reflections every 60 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.056
  • S = 0.96
  • 2909 reflections
  • 200 parameters
  • 61 restraints
  • H-atom parameters constrained
  • Δρmax = 0.08 e Å−3
  • Δρmin = −0.10 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042467/wm2411sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042467/wm2411Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002 [triangle]).

supplementary crystallographic information

Comment

Cyclopenta[a]quinolizines are a novel subclass of non-benzenoid heterocycles π-isoelectronic with azulene, so called pseudoazulenes. Some pseudoazulenes show ambident reactivity towards electrophiles, since both α-sites of the cyclopentadiene ring can be substituted. The Vilsmeier–Haack reaction (Laue & Plagens, 2005) (Fig. 1) was one of the simplest tests to estimate the reactivity of cyclopenta[a]quinolizines and the regioselectivity of substitution.

We found that only one product was formed in the reaction. Simple 1H NMR spectra cannot provide an unambiguous proof of the site of substitution. By X-ray analysis we proved that the product is the title compound. From this viewpoint it becomes evident, that the strong shift of the proton H-4 signal (10.53 p.p.m. in 1 against 8.16 in the initial compound 2; Fig. 1) observed in 1H NMR spectra is caused by the peri-effect of the formyl group at C7.

In the title compound 1 (Fig. 2), the bond lengths in the heterocyclic core show slight alternations. The bond length between C7 and C71 of the carbonyl group (1.4351 (8) Å) is much shorter than that in the structure of the simplest aromatic ketone, benzaldehyde (1.477 (3) Å; Borisenko et al., 1996). Since the formyl group is almost co-planar with the tricyclic ring (the torsion angle C8—C7—C71═O71 is -0.78 (13)°), it may indicate strong conjugation of the carbonyl group with the π-excessive cyclopentadiene ring.

Experimental

Freshly distilled DMF (1 ml) was added at 263 K to the solution of POCl3 (2.34 mmol, 357 mg) in dry THF (15 ml) forming the Vilsmeier reagent. The solution of 7-(4-methylphenyl)cyclopenta[a]quinolizine 2 (300 mg, 1.17 mmol) in dry THF (10 ml) was added dropwise at 273 K to the Vilsmeier reagent. The mixture was stirred overnight at room temperature, diluted with water, and neutralized by NaOH to pH≈ 8. The resultant precipitate was filtered off and recrystallized from DMF. Yield of 1: 311 mg (93%), m.p. = 527–528 K.

1H NMR (400 MHz; CDCl3; δ, p.p.m.; J, Hz): 2.47 (s, 3H, CH3), 6.80 (d, J = 4.0, 1H), 7.12 (m, 1H), 7.35 (m, 2H, ArH), 7.61 (m, 2H, ArH), 7.64 (s, 1H), 7.77 (d, J = 4.0, 1H), 7.82 (s, 1H), 8.21 (d, J = 7.1, 1H, H4), 9.92 (s, 1H, CHO), 10.53 (d, J = 7.1, 1H, H1).

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.93Å; 0.96 Å) and refined as riding, with Uiso(H) = 1.2(1.5)Ueq(C). The initial experimental data were measured for a full sphere, but at the final stage of the refinement, the 'MERG 2' instruction was used in SHELXL and the DIFABS procedure (Walker & Stuart, 1983) was applied. As a result, we have FVAR = 1, Rint = 0, and the experimental data were reduced to a half-sphere with indices -8 ≤h≤ +8, -10 ≤k≤ +11 and 0 ≤l≤ +15.

Figures

Fig. 1.
Synthesis of the title compound.
Fig. 2.
ORTEP-3 plot of the molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Crystal data

C20H15NOZ = 2
Mr = 285.33F(000) = 300
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Melting point = 527–528 K
a = 7.2907 (13) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.9627 (14) ÅCell parameters from 25 reflections
c = 12.0162 (19) Åθ = 32.0–34.9°
α = 88.48 (2)°µ = 0.64 mm1
β = 81.400 (19)°T = 295 K
γ = 67.821 (18)°Prism, pale yellow
V = 718.5 (2) Å30.15 × 0.13 × 0.11 mm

Data collection

Enraf–Nonius CAD-4 diffractometer2394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 75.2°, θmin = 3.7°
non–profiled ω scansh = −8→9
Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983)k = −10→11
Tmin = 0.649, Tmax = 1.000l = −11→15
3186 measured reflections1 standard reflections every 60 min
2909 independent reflections intensity decay: 5%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.0398P)2] where P = (Fo2 + 2Fc2)/3
2909 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.08 e Å3
61 restraintsΔρmin = −0.10 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.20346 (7)0.58547 (5)0.01802 (3)0.05065 (12)
C20.09520 (9)0.71381 (6)0.09351 (4)0.05806 (16)
H20.07990.81760.07160.070*
C30.01070 (9)0.69255 (6)0.19859 (4)0.05301 (14)
C31−0.11306 (9)0.83714 (6)0.27192 (4)0.05427 (14)
C32−0.25884 (9)0.96616 (6)0.22956 (5)0.06118 (16)
H32−0.27710.96210.15490.073*
C33−0.37705 (9)1.10046 (6)0.29708 (5)0.06566 (17)
H33−0.47511.18490.26740.079*
C34−0.35215 (9)1.11184 (7)0.40883 (5)0.06390 (17)
C35−0.20805 (10)0.98237 (7)0.45021 (5)0.06909 (18)
H35−0.18970.98670.52480.083*
C36−0.08989 (9)0.84623 (7)0.38403 (4)0.06206 (16)
H360.00530.76060.41460.074*
C37−0.47854 (12)1.25985 (8)0.48145 (6)0.0930 (3)
H37A−0.49651.23000.55840.140*
H37B−0.60681.30880.45680.140*
H37C−0.41281.33520.47550.140*
C40.03745 (9)0.53309 (6)0.23109 (4)0.05122 (14)
C5−0.03475 (10)0.47207 (7)0.33034 (5)0.06394 (17)
H5−0.10690.53150.39570.077*
C60.02069 (10)0.30912 (7)0.31294 (5)0.06486 (17)
H6−0.00750.24060.36620.078*
C70.12585 (9)0.25977 (6)0.20378 (4)0.05555 (15)
C710.17458 (10)0.09745 (6)0.16468 (5)0.06569 (17)
H710.15220.02860.21960.079*
O710.24109 (8)0.03569 (5)0.07002 (4)0.08139 (15)
C80.13764 (8)0.40156 (6)0.15092 (4)0.05205 (14)
C90.23175 (8)0.42748 (5)0.04415 (4)0.04982 (14)
C100.35065 (9)0.30555 (6)−0.03740 (4)0.05922 (16)
H100.37210.1986−0.02180.071*
C110.43433 (9)0.34090 (7)−0.13810 (5)0.06062 (16)
H110.51400.2589−0.19030.073*
C120.39948 (9)0.50275 (7)−0.16278 (5)0.06187 (16)
H120.45250.5283−0.23260.074*
C130.28977 (9)0.62042 (7)−0.08572 (4)0.05829 (16)
H130.27110.7268−0.10180.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0615 (3)0.03132 (19)0.0522 (2)−0.01155 (18)−0.00431 (18)0.00552 (15)
C20.0769 (4)0.0302 (2)0.0558 (3)−0.0096 (2)−0.0049 (2)0.00297 (18)
C30.0637 (4)0.0335 (2)0.0543 (3)−0.0101 (2)−0.0086 (2)0.00249 (18)
C310.0664 (4)0.0342 (2)0.0574 (3)−0.0167 (2)−0.0006 (2)−0.00026 (19)
C320.0758 (4)0.0377 (2)0.0636 (3)−0.0150 (2)−0.0081 (3)0.0018 (2)
C330.0694 (4)0.0375 (3)0.0808 (3)−0.0125 (2)−0.0032 (3)−0.0015 (2)
C340.0673 (4)0.0436 (3)0.0761 (3)−0.0236 (3)0.0126 (3)−0.0100 (2)
C350.0923 (5)0.0540 (3)0.0574 (3)−0.0280 (3)0.0017 (3)−0.0071 (2)
C360.0737 (4)0.0468 (3)0.0595 (3)−0.0159 (3)−0.0095 (3)−0.0008 (2)
C370.1015 (6)0.0583 (4)0.1010 (5)−0.0230 (4)0.0258 (4)−0.0257 (3)
C40.0603 (3)0.0355 (2)0.0534 (2)−0.0133 (2)−0.0083 (2)0.00462 (18)
C50.0812 (4)0.0469 (3)0.0529 (3)−0.0149 (3)−0.0034 (2)0.0080 (2)
C60.0814 (4)0.0456 (3)0.0606 (3)−0.0183 (3)−0.0076 (3)0.0167 (2)
C70.0665 (4)0.0346 (2)0.0603 (3)−0.0136 (2)−0.0102 (2)0.01082 (19)
C710.0786 (4)0.0343 (2)0.0753 (3)−0.0135 (2)−0.0078 (3)0.0114 (2)
O710.1109 (4)0.0401 (2)0.0856 (3)−0.0254 (2)0.0002 (3)−0.00102 (19)
C80.0609 (3)0.0335 (2)0.0536 (2)−0.0094 (2)−0.0077 (2)0.00764 (18)
C90.0600 (3)0.0315 (2)0.0536 (2)−0.0124 (2)−0.0089 (2)0.00413 (18)
C100.0743 (4)0.0354 (2)0.0592 (3)−0.0124 (2)−0.0055 (2)−0.0013 (2)
C110.0644 (4)0.0505 (3)0.0600 (3)−0.0159 (3)−0.0026 (2)−0.0062 (2)
C120.0715 (4)0.0561 (3)0.0520 (3)−0.0203 (3)−0.0017 (2)0.0028 (2)
C130.0727 (4)0.0431 (3)0.0548 (3)−0.0195 (2)−0.0045 (2)0.0091 (2)

Geometric parameters (Å, °)

N1—C91.3862 (7)C37—H37C0.9600
N1—C21.3873 (7)C4—C51.4119 (8)
N1—C131.3934 (7)C4—C81.4321 (7)
C2—C31.3614 (8)C5—C61.3731 (8)
C2—H20.9300C5—H50.9300
C3—C41.4198 (7)C6—C71.4064 (8)
C3—C311.4865 (8)C6—H60.9300
C31—C321.3887 (8)C7—C81.4315 (8)
C31—C361.3909 (8)C7—C711.4351 (8)
C32—C331.3818 (8)C71—O711.2252 (7)
C32—H320.9300C71—H710.9300
C33—C341.3930 (9)C8—C91.4185 (8)
C33—H330.9300C9—C101.4119 (7)
C34—C351.3794 (9)C10—C111.3570 (8)
C34—C371.5061 (8)C10—H100.9300
C35—C361.3843 (8)C11—C121.4065 (9)
C35—H350.9300C11—H110.9300
C36—H360.9300C12—C131.3428 (8)
C37—H37A0.9600C12—H120.9300
C37—H37B0.9600C13—H130.9300
C9—N1—C2122.34 (5)C5—C4—C3132.01 (5)
C9—N1—C13120.37 (5)C5—C4—C8107.93 (5)
C2—N1—C13117.25 (5)C3—C4—C8119.75 (5)
C3—C2—N1122.08 (5)C6—C5—C4107.68 (5)
C3—C2—H2119.0C6—C5—H5126.2
N1—C2—H2119.0C4—C5—H5126.2
C2—C3—C4118.24 (5)C5—C6—C7110.93 (6)
C2—C3—C31118.72 (5)C5—C6—H6124.5
C4—C3—C31122.97 (5)C7—C6—H6124.5
C32—C31—C36118.33 (5)C6—C7—C8106.27 (5)
C32—C31—C3120.04 (5)C6—C7—C71119.19 (6)
C36—C31—C3121.61 (5)C8—C7—C71134.02 (5)
C33—C32—C31120.75 (6)O71—C71—C7129.90 (6)
C33—C32—H32119.6O71—C71—H71115.1
C31—C32—H32119.6C7—C71—H71115.1
C32—C33—C34121.27 (6)C9—C8—C7132.70 (5)
C32—C33—H33119.4C9—C8—C4120.05 (5)
C34—C33—H33119.4C7—C8—C4107.18 (5)
C35—C34—C33117.44 (5)N1—C9—C10117.65 (5)
C35—C34—C37121.47 (6)N1—C9—C8117.11 (5)
C33—C34—C37121.09 (6)C10—C9—C8125.24 (5)
C34—C35—C36122.00 (6)C11—C10—C9121.49 (5)
C34—C35—H35119.0C11—C10—H10119.3
C36—C35—H35119.0C9—C10—H10119.3
C35—C36—C31120.20 (6)C10—C11—C12119.40 (5)
C35—C36—H36119.9C10—C11—H11120.3
C31—C36—H36119.9C12—C11—H11120.3
C34—C37—H37A109.5C13—C12—C11120.09 (5)
C34—C37—H37B109.5C13—C12—H12120.0
H37A—C37—H37B109.5C11—C12—H12120.0
C34—C37—H37C109.5C12—C13—N1120.95 (5)
H37A—C37—H37C109.5C12—C13—H13119.5
H37B—C37—H37C109.5N1—C13—H13119.5
C9—N1—C2—C30.42 (9)C5—C6—C7—C71−172.26 (6)
C13—N1—C2—C3−177.64 (5)C6—C7—C71—O71169.69 (7)
N1—C2—C3—C40.70 (9)C8—C7—C71—O71−0.78 (13)
N1—C2—C3—C31−176.42 (5)C6—C7—C8—C9176.75 (6)
C2—C3—C31—C3247.59 (9)C71—C7—C8—C9−11.90 (12)
C4—C3—C31—C32−129.39 (7)C6—C7—C8—C4−0.13 (7)
C2—C3—C31—C36−133.71 (7)C71—C7—C8—C4171.22 (7)
C4—C3—C31—C3649.31 (9)C5—C4—C8—C9−177.74 (5)
C36—C31—C32—C330.33 (10)C3—C4—C8—C97.92 (9)
C3—C31—C32—C33179.07 (5)C5—C4—C8—C7−0.38 (7)
C31—C32—C33—C340.92 (10)C3—C4—C8—C7−174.73 (6)
C32—C33—C34—C35−1.43 (10)C2—N1—C9—C10−177.72 (5)
C32—C33—C34—C37178.76 (6)C13—N1—C9—C100.29 (8)
C33—C34—C35—C360.72 (10)C2—N1—C9—C82.57 (8)
C37—C34—C35—C36−179.47 (6)C13—N1—C9—C8−179.42 (5)
C34—C35—C36—C310.51 (10)C7—C8—C9—N1176.80 (6)
C32—C31—C36—C35−1.03 (9)C4—C8—C9—N1−6.65 (8)
C3—C31—C36—C35−179.75 (6)C7—C8—C9—C10−2.89 (11)
C2—C3—C4—C5−177.57 (6)C4—C8—C9—C10173.67 (5)
C31—C3—C4—C5−0.58 (11)N1—C9—C10—C11−0.16 (9)
C2—C3—C4—C8−4.81 (9)C8—C9—C10—C11179.52 (5)
C31—C3—C4—C8172.18 (5)C9—C10—C11—C12−1.05 (10)
C3—C4—C5—C6174.15 (7)C10—C11—C12—C132.19 (10)
C8—C4—C5—C60.76 (7)C11—C12—C13—N1−2.10 (10)
C4—C5—C6—C7−0.87 (8)C9—N1—C13—C120.86 (9)
C5—C6—C7—C80.62 (7)C2—N1—C13—C12178.96 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2411).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Borisenko, K., Bock, C. & Hargittaij, I. (1996). J. Phys. Chem.100, 18, 7426–7434.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Laue, T. & Plagens, A. (2005). Named Organic Reactions, 2nd ed. Chichester, England: Wiley & Sons.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography