PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2867.
Published online 2010 October 20. doi:  10.1107/S1600536810041425
PMCID: PMC3009157

4-(4-Hydroxybenzoyl)phenol mono­hydrate

Abstract

The aromatic rings of the title compound, C13H10O3·H2O, are aligned at dihedral angles of 20.6 (1) and 40.8 (1)° with respect to the triangular Car­yl–C(=O)–Car­yl fragment. The hy­droxy groups are each hydrogen-bond donors to separate water mol­ecules, the water mol­ecule itself being hydrogen-bonded to one hy­droxy group and one carbonyl group. The water mol­ecule exists in an unusual four-coordinate environment in the resulting layer structure.

Related literature

For the crystal structure of anhydrous 4,4′-dihy­droxy­benzophenone, see: Ferguson & Glidewell (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2867-scheme1.jpg

Experimental

Crystal data

  • C13H10O3·H2O
  • M r = 232.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2867-efi1.jpg
  • a = 4.9398 (1) Å
  • b = 9.8273 (2) Å
  • c = 23.1446 (4) Å
  • β = 94.520 (1)°
  • V = 1120.06 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.45 × 0.30 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • 8356 measured reflections
  • 2572 independent reflections
  • 2016 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.123
  • S = 1.05
  • 2572 reflections
  • 170 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041425/zs2075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041425/zs2075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Northeast Normal University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

4,4'-Dihydroxbenzophenone exists as a OH···Ohydroxy hydrogen-bonded chains that are linked by OH···Ocarbonyl hydrogen bonds into sheets. The first set of hydrogen bonds [2.785 (4), 2.791 (4) Å] is longer than the second set [2.624 (4), 2.627 (4) Å] (Ferguson & Glidewell, 1996). The monohydrated title compound C13H10O3.H2O (Scheme I, Fig. 1) also adopts a hydrogen-bonded sheet motif. The aromatic rings are aligned at 20.6 (1) and 40.8 (1) ° with respect to the triangular-shaped Caryl–C(═O)–Caryl fragment. The hydroxy groups are each hydrogen-bond donors to separate water molecules which also act as hydrogen-bond donors to an hydroxy group and a carbonyl group (Table 1). There are no hydroxy···carbonyl interactions, unlike those found in the anhydrous compound. The water molecule exists in an unusual four-coordinate environment in the resulting two-dimensional layer structure (Fig. 2).

Experimental

Anhydrous 4,4'-dihydroxybenzophenone (0.25 mmol, 0.054 g) and boric acid (0.50 mmol, 0.031 g) were dissolved in a water-ethanol mixture (50 ml/100 ml v/v). Trimethylamine (33% aqueous solution) was added until the solution registered a neutral pH. The mixture was then set aside for a few days after which yellow crystal blocks of the title compound were isolated.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The hydroxy and water H-atoms were located in a difference Fourier map, and were included in the refinement with a distance restraint of O–H = 0.84±0.01 Å and with their isotropic displacement parameters refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C13H10O3.H2O at the 50% probability level.
Fig. 2.
The layer structure of the title compound with hydrogen-bonding interactions shown as dashed lines.

Crystal data

C13H10O3·H2OF(000) = 488
Mr = 232.23Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3494 reflections
a = 4.9398 (1) Åθ = 2.7–27.2°
b = 9.8273 (2) ŵ = 0.10 mm1
c = 23.1446 (4) ÅT = 293 K
β = 94.520 (1)°Block, yellow
V = 1120.06 (4) Å30.45 × 0.30 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer2016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
graphiteθmax = 27.5°, θmin = 1.8°
ω scansh = −6→6
8356 measured reflectionsk = −11→12
2572 independent reflectionsl = −29→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2426P] where P = (Fo2 + 2Fc2)/3
2572 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.22 e Å3
4 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2714 (2)0.12226 (11)0.49586 (5)0.0570 (3)
O20.5003 (3)0.68859 (12)0.38317 (5)0.0671 (4)
O31.0143 (3)0.54977 (14)0.15066 (5)0.0634 (3)
O1W0.1638 (3)0.86726 (12)0.43550 (5)0.0554 (3)
C10.5324 (3)0.57501 (15)0.36223 (6)0.0465 (3)
C20.4542 (3)0.45204 (15)0.39381 (6)0.0442 (3)
C30.2632 (4)0.46347 (17)0.43426 (8)0.0676 (5)
H3A0.17720.54660.43870.081*
C40.1979 (4)0.35531 (17)0.46788 (8)0.0668 (5)
H40.06740.36530.49440.080*
C50.3249 (3)0.23209 (15)0.46244 (6)0.0454 (3)
C60.5141 (3)0.21717 (16)0.42219 (7)0.0536 (4)
H60.59930.13380.41800.064*
C70.5768 (3)0.32592 (16)0.38821 (6)0.0508 (4)
H70.70370.31480.36100.061*
C80.6547 (3)0.56332 (14)0.30623 (6)0.0426 (3)
C90.8488 (3)0.65824 (16)0.29241 (7)0.0509 (4)
H90.89940.72710.31860.061*
C100.9667 (3)0.65163 (17)0.24064 (7)0.0552 (4)
H101.10040.71390.23260.066*
C110.8866 (3)0.55235 (15)0.20044 (6)0.0459 (3)
C120.6853 (3)0.46052 (15)0.21229 (6)0.0457 (3)
H12A0.62530.39620.18470.055*
C130.5745 (3)0.46505 (14)0.26519 (6)0.0451 (3)
H130.44400.40130.27350.054*
H10.147 (4)0.141 (2)0.5179 (8)0.091 (7)*
H30.946 (5)0.4859 (19)0.1296 (9)0.103 (9)*
H110.260 (4)0.8047 (19)0.4233 (10)0.101 (8)*
H120.262 (5)0.921 (2)0.4565 (10)0.111 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0723 (7)0.0453 (6)0.0572 (7)−0.0005 (5)0.0286 (6)0.0009 (5)
O20.1019 (10)0.0421 (6)0.0609 (7)0.0052 (6)0.0298 (7)−0.0063 (5)
O30.0714 (8)0.0729 (8)0.0487 (6)−0.0131 (6)0.0223 (6)−0.0028 (6)
O1W0.0679 (7)0.0496 (7)0.0508 (6)−0.0027 (6)0.0174 (6)−0.0040 (5)
C10.0537 (8)0.0424 (8)0.0440 (7)0.0039 (6)0.0080 (6)−0.0038 (6)
C20.0493 (8)0.0432 (8)0.0413 (7)0.0013 (6)0.0103 (6)−0.0042 (6)
C30.0859 (12)0.0445 (9)0.0784 (12)0.0133 (8)0.0452 (10)−0.0004 (8)
C40.0808 (12)0.0522 (9)0.0741 (11)0.0072 (8)0.0478 (10)−0.0008 (8)
C50.0519 (8)0.0429 (8)0.0429 (7)−0.0032 (6)0.0118 (6)−0.0021 (6)
C60.0650 (9)0.0450 (8)0.0539 (9)0.0108 (7)0.0234 (7)0.0010 (7)
C70.0582 (9)0.0501 (8)0.0470 (8)0.0083 (7)0.0223 (7)0.0007 (6)
C80.0485 (7)0.0388 (7)0.0411 (7)0.0031 (6)0.0074 (6)0.0012 (6)
C90.0605 (9)0.0439 (8)0.0486 (8)−0.0085 (7)0.0064 (7)−0.0056 (6)
C100.0595 (9)0.0514 (9)0.0559 (9)−0.0154 (7)0.0123 (7)−0.0002 (7)
C110.0505 (8)0.0468 (8)0.0413 (7)0.0020 (6)0.0089 (6)0.0052 (6)
C120.0539 (8)0.0426 (8)0.0408 (7)−0.0022 (6)0.0045 (6)−0.0030 (6)
C130.0497 (8)0.0407 (7)0.0458 (7)−0.0041 (6)0.0088 (6)−0.0001 (6)

Geometric parameters (Å, °)

O1—C51.3659 (17)C5—C61.3784 (19)
O1—H10.847 (10)C6—C71.377 (2)
O2—C11.2322 (18)C6—H60.9300
O3—C111.3566 (17)C7—H70.9300
O3—H30.847 (10)C8—C131.390 (2)
O1W—H110.841 (10)C8—C91.393 (2)
O1W—H120.844 (10)C9—C101.375 (2)
C1—C81.4771 (19)C9—H90.9300
C1—C21.479 (2)C10—C111.384 (2)
C2—C31.385 (2)C10—H100.9300
C2—C71.390 (2)C11—C121.386 (2)
C3—C41.371 (2)C12—C131.3810 (19)
C3—H3A0.9300C12—H12A0.9300
C4—C51.374 (2)C13—H130.9300
C4—H40.9300
C5—O1—H1110.4 (16)C6—C7—C2121.32 (13)
C11—O3—H3108.2 (17)C6—C7—H7119.3
H11—O1W—H12110 (2)C2—C7—H7119.3
O2—C1—C8119.34 (13)C13—C8—C9118.22 (13)
O2—C1—C2119.92 (13)C13—C8—C1122.62 (13)
C8—C1—C2120.73 (12)C9—C8—C1119.08 (13)
C3—C2—C7117.41 (14)C10—C9—C8121.01 (14)
C3—C2—C1119.09 (13)C10—C9—H9119.5
C7—C2—C1123.34 (12)C8—C9—H9119.5
C4—C3—C2121.61 (15)C9—C10—C11120.05 (14)
C4—C3—H3A119.2C9—C10—H10120.0
C2—C3—H3A119.2C11—C10—H10120.0
C3—C4—C5120.11 (14)O3—C11—C10117.16 (13)
C3—C4—H4119.9O3—C11—C12122.99 (14)
C5—C4—H4119.9C10—C11—C12119.84 (13)
O1—C5—C4122.29 (12)C13—C12—C11119.68 (13)
O1—C5—C6118.08 (13)C13—C12—H12A120.2
C4—C5—C6119.64 (14)C11—C12—H12A120.2
C7—C6—C5119.90 (14)C12—C13—C8121.10 (13)
C7—C6—H6120.1C12—C13—H13119.5
C5—C6—H6120.1C8—C13—H13119.5
O2—C1—C2—C322.9 (2)O2—C1—C8—C13−144.18 (16)
C8—C1—C2—C3−158.45 (16)C2—C1—C8—C1337.2 (2)
O2—C1—C2—C7−152.26 (16)O2—C1—C8—C932.5 (2)
C8—C1—C2—C726.4 (2)C2—C1—C8—C9−146.10 (15)
C7—C2—C3—C40.4 (3)C13—C8—C9—C10−2.8 (2)
C1—C2—C3—C4−175.06 (18)C1—C8—C9—C10−179.63 (15)
C2—C3—C4—C50.8 (3)C8—C9—C10—C112.2 (3)
C3—C4—C5—O1178.47 (18)C9—C10—C11—O3−178.83 (15)
C3—C4—C5—C6−1.3 (3)C9—C10—C11—C120.6 (2)
O1—C5—C6—C7−179.09 (15)O3—C11—C12—C13176.64 (14)
C4—C5—C6—C70.7 (3)C10—C11—C12—C13−2.8 (2)
C5—C6—C7—C20.5 (3)C11—C12—C13—C82.2 (2)
C3—C2—C7—C6−1.0 (3)C9—C8—C13—C120.6 (2)
C1—C2—C7—C6174.23 (15)C1—C8—C13—C12177.31 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O1wi0.85 (1)1.95 (1)2.774 (2)164 (2)
O3—H3···O1wii0.85 (1)1.95 (1)2.773 (2)164 (2)
O1w—H11···O20.84 (1)1.93 (1)2.762 (2)168 (2)
O1w—H12···O1iii0.84 (1)2.18 (2)2.898 (2)143 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2075).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ferguson, G. & Glidewell, C. (1996). Acta Cryst. C52, 3057–3062.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography