PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2719.
Published online 2010 October 2. doi:  10.1107/S1600536810038766
PMCID: PMC3009152

(E)-3,5-Dimeth­oxy­benzaldehyde oxime

Abstract

In the title compound, C9H11NO3, the oxime grouping is twisted by 12.68 (6)° with respect to the dimethoxyl­benzene ring. In the crystal, mol­ecules are linked into an infinite [100] chain via O—H(...)N hydrogen bonds, instead of the more common oxime packing motif of dimers with an R 2 2(6) graph-set motif.

Related literature

For backgroud to oximes as therapeutic agents, see: Marrs et al. (2006 [triangle]); Jokanovic et al. (2009 [triangle]). For related structures, see: Bao (2008 [triangle]); Abbas et al. (2010 [triangle]). For graph-set theory, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2719-scheme1.jpg

Experimental

Crystal data

  • C9H11NO3
  • M r = 181.19
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2719-efi1.jpg
  • a = 4.4027 (9) Å
  • b = 13.800 (3) Å
  • c = 14.300 (3) Å
  • V = 868.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 113 K
  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.979, T max = 0.990
  • 7173 measured reflections
  • 1239 independent reflections
  • 1115 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.081
  • S = 1.08
  • 1239 reflections
  • 124 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038766/hb5656sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038766/hb5656Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Hebei Province Heath Bureau grant (No. 20090176), the Ministry of Science and Technology of the People’s Republic of China Inter­national Cooperation Project (No. 2008DFR10530) and the Science and Technology Support Program of Hebei Province Science and Technology Department (No. 08243531D).

supplementary crystallographic information

Comment

Oximes are an therapeutic agent in organophosphorus poisoning (Marrs et al., 2006; Jokanovic et al., 2009). As part of our interest in the study of oxime derivatives, we herein report the crystal structure of the title compound (I).

In the crystal structure of the title compound, Fig. 1, the oxime moiety has an E configuration [C5—C9—N1—O3= 178.22 (11)°] and is twisted with respect to the dimethoxylbenzene ring by 12.68 (6)°. Molecules are linked to form an infinite chain down the a axis via O—H···N hydrogen bonds (Fig. 2 and Table 1), which differates from the reported R22(6) graph-set motif (Etter et al., 1990; Bernstein et al., 1995; Bao, 2008; Abbas et al., 2010).

Experimental

To a solution of 3,4-dimethoxylbenzaldehyde (0.95 g, 5 mmol) in 25 ml e thanol, hydroxylamine hydrochloride (0.42 g, 6 mmol) and aqueous sodium hydroxide (0.24 g, 6 mmol) were added and the mixture was heated under reflux until completion of the reaction. The reaction mixture was concentrated and water added. The precipitate was collected by filtration, washed with water and dried under vaccu. Colourless blocks of (I) were grown out via recrystallization from ethanol.

Refinement

All H atoms were placed in calculated position and treated as riding on their parent atoms with C—H = 0.93 and 0.97Å or O—H =0.82 Å with Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, or 1.5Ueq (O and C) for hydroxyl H and methyl H atom].

Figures

Fig. 1.
The molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The infinite chain formed via O—H···N down the a axis.

Crystal data

C9H11NO3F(000) = 384
Mr = 181.19Dx = 1.385 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3117 reflections
a = 4.4027 (9) Åθ = 2.1–27.9°
b = 13.800 (3) ŵ = 0.11 mm1
c = 14.300 (3) ÅT = 113 K
V = 868.9 (3) Å3Block, colorless
Z = 40.20 × 0.18 × 0.10 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer1239 independent reflections
Radiation source: rotating anode1115 reflections with I > 2σ(I)
multilayerRint = 0.036
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and [var phi] scansh = −5→5
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −18→12
Tmin = 0.979, Tmax = 0.990l = −18→18
7173 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081w = 1/[σ2(Fo2) + (0.0566P)2 + 0.0067P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1239 reflectionsΔρmax = 0.22 e Å3
124 parametersΔρmin = −0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.135 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.1440 (3)0.57833 (8)1.13939 (7)0.0215 (3)
O21.2719 (3)0.66671 (7)0.81997 (7)0.0212 (3)
O30.2763 (3)0.27744 (7)0.90865 (7)0.0195 (3)
H30.211 (5)0.2351 (13)0.9537 (13)0.029*
N10.4898 (3)0.33604 (8)0.95540 (9)0.0159 (3)
C11.0843 (4)0.56661 (10)1.04608 (10)0.0170 (3)
C21.2075 (4)0.62501 (10)0.97646 (10)0.0179 (3)
H21.34040.67670.99230.021*
C31.1337 (4)0.60688 (10)0.88299 (10)0.0169 (3)
C40.9316 (4)0.53398 (10)0.85910 (10)0.0168 (3)
H40.87750.52330.79560.020*
C50.8078 (4)0.47596 (10)0.93064 (10)0.0156 (3)
C60.8833 (4)0.49179 (10)1.02358 (10)0.0167 (3)
H60.79940.45221.07140.020*
C71.3439 (4)0.65620 (10)1.16453 (11)0.0221 (4)
H7A1.53960.64761.13290.033*
H7B1.37520.65611.23240.033*
H7C1.25360.71801.14550.033*
C81.2008 (4)0.65223 (11)0.72320 (10)0.0255 (4)
H8A1.25740.58620.70480.038*
H8B1.31400.69900.68520.038*
H8C0.98240.66160.71350.038*
C90.5886 (3)0.40214 (10)0.90072 (10)0.0161 (3)
H90.51700.40350.83810.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0254 (6)0.0209 (5)0.0180 (5)−0.0057 (5)−0.0022 (5)−0.0001 (4)
O20.0242 (6)0.0191 (5)0.0204 (5)−0.0043 (4)0.0028 (5)0.0047 (4)
O30.0208 (6)0.0195 (5)0.0182 (5)−0.0073 (5)−0.0012 (5)−0.0006 (4)
N10.0136 (6)0.0151 (6)0.0188 (6)−0.0007 (5)−0.0006 (6)−0.0019 (4)
C10.0169 (7)0.0151 (7)0.0189 (7)0.0014 (6)−0.0015 (6)−0.0009 (5)
C20.0161 (7)0.0137 (6)0.0238 (7)−0.0007 (6)−0.0006 (6)−0.0007 (5)
C30.0156 (7)0.0135 (7)0.0218 (7)0.0024 (6)0.0032 (6)0.0038 (5)
C40.0175 (7)0.0163 (7)0.0166 (7)0.0015 (6)0.0001 (6)0.0009 (5)
C50.0132 (7)0.0134 (6)0.0203 (7)0.0018 (6)−0.0003 (6)0.0002 (5)
C60.0162 (7)0.0149 (7)0.0188 (7)−0.0005 (6)0.0008 (6)0.0020 (5)
C70.0230 (8)0.0214 (8)0.0218 (8)−0.0030 (6)−0.0016 (7)−0.0046 (6)
C80.0334 (10)0.0252 (8)0.0179 (8)−0.0010 (7)0.0049 (7)0.0048 (6)
C90.0157 (7)0.0171 (7)0.0156 (7)0.0010 (6)−0.0014 (6)0.0000 (5)

Geometric parameters (Å, °)

O1—C11.3697 (18)C4—C51.4089 (19)
O1—C71.4349 (19)C4—H40.9500
O2—C31.3653 (17)C5—C61.387 (2)
O2—C81.4328 (17)C5—C91.467 (2)
O3—N11.4087 (15)C6—H60.9500
O3—H30.916 (19)C7—H7A0.9800
N1—C91.2777 (18)C7—H7B0.9800
C1—C21.391 (2)C7—H7C0.9800
C1—C61.397 (2)C8—H8A0.9800
C2—C31.398 (2)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C3—C41.386 (2)C9—H90.9500
C1—O1—C7116.76 (12)C5—C6—C1119.26 (14)
C3—O2—C8117.12 (12)C5—C6—H6120.4
N1—O3—H3103.9 (12)C1—C6—H6120.4
C9—N1—O3110.28 (12)O1—C7—H7A109.5
O1—C1—C2123.64 (14)O1—C7—H7B109.5
O1—C1—C6115.67 (13)H7A—C7—H7B109.5
C2—C1—C6120.68 (14)O1—C7—H7C109.5
C1—C2—C3119.34 (14)H7A—C7—H7C109.5
C1—C2—H2120.3H7B—C7—H7C109.5
C3—C2—H2120.3O2—C8—H8A109.5
O2—C3—C4124.22 (13)O2—C8—H8B109.5
O2—C3—C2114.79 (13)H8A—C8—H8B109.5
C4—C3—C2120.98 (13)O2—C8—H8C109.5
C3—C4—C5118.82 (14)H8A—C8—H8C109.5
C3—C4—H4120.6H8B—C8—H8C109.5
C5—C4—H4120.6N1—C9—C5122.77 (13)
C6—C5—C4120.89 (14)N1—C9—H9118.6
C6—C5—C9123.12 (13)C5—C9—H9118.6
C4—C5—C9115.94 (13)
C7—O1—C1—C20.4 (2)C3—C4—C5—C60.7 (2)
C7—O1—C1—C6−178.53 (13)C3—C4—C5—C9178.22 (13)
O1—C1—C2—C3179.67 (14)C4—C5—C6—C10.2 (2)
C6—C1—C2—C3−1.4 (2)C9—C5—C6—C1−177.15 (13)
C8—O2—C3—C40.0 (2)O1—C1—C6—C5179.15 (14)
C8—O2—C3—C2−179.10 (14)C2—C1—C6—C50.2 (2)
C1—C2—C3—O2−178.50 (13)O3—N1—C9—C5178.28 (12)
C1—C2—C3—C42.3 (2)C6—C5—C9—N1−12.4 (2)
O2—C3—C4—C5178.97 (14)C4—C5—C9—N1170.15 (14)
C2—C3—C4—C5−2.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.916 (19)1.90 (2)2.7970 (17)166.5 (19)

Symmetry codes: (i) x−1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5656).

References

  • Abbas, A., Hussain, S., Hafeez, N., Badshah, A., Hasan, A. & Lo, K. M. (2010). Acta Cryst. E66, o1130. [PMC free article] [PubMed]
  • Bao, F.-Y. (2008). Acta Cryst. E64, o2134. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Jokanovic, M. & Prostran, M. (2009). Curr. Med. Chem.16, 2177–2188. [PubMed]
  • Marrs, T. C., Rice, P. & Vale, J. A. (2006). Toxicol. Rev.25, 297–323. [PubMed]
  • Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography