PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2934.
Published online 2010 October 23. doi:  10.1107/S1600536810042133
PMCID: PMC3009144

(2R,4R)-3-(tert-But­oxy­carbon­yl)-2-(3-chloro­phen­yl)-1,3-thia­zolidine-4-carb­oxy­lic acid monohydrate

Abstract

In the title compound, C15H18ClNO4S·H2O, the thia­zolidine ring displays a half-chair conformation. In the crystal, the water mol­ecules are linked to the organic acid mol­ecules via inter­molecular O—H(...)O hydrogen bonds.

Related literature

For applications of thia­zolidine derivatives, see: Kallen (1971 [triangle]); Seki et al. (2004 [triangle]); Song et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2934-scheme1.jpg

Experimental

Crystal data

  • C15H18ClNO4S·H2O
  • M r = 361.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2934-efi1.jpg
  • a = 8.2460 (16) Å
  • b = 5.9660 (12) Å
  • c = 18.132 (4) Å
  • β = 99.81 (3)°
  • V = 879.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 293 K
  • 0.20 × 0.17 × 0.15 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.932, T max = 0.948
  • 3417 measured reflections
  • 3182 independent reflections
  • 2169 reflections with I > 2σ(I)
  • R int = 0.080
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.167
  • S = 1.03
  • 3182 reflections
  • 208 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.28 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1451 Friedel pairs
  • Flack parameter: −0.11 (16)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042133/xu5054sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042133/xu5054Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Zhejiang Traditional Chinese Medicine University (Project 2009ZY06) and the Education Department of Zhejiang Province, China (Project 20071211).

supplementary crystallographic information

Comment

The steric course of the reaction between L-cysteine and aldehydes deserved much attention because this reaction had been implicated in several biochemical processes (Kallen, 1971). An analogous condensation reaction constituted the first step in the syntheses of important natural products, such as penicillin and biotin (Seki et al., 2004). Therefore, thiazolidine derivatives have become especially noteworthy in recent years (Song et al. 2009). In the present work, the structure of the title new compound is reported.

The compound consists of a (2R,4R)-3-(tert-butoxycarbonyl)-2-(3-chlorophenyl)thiazolidine-4-carboxylic acid molecule and a water molecule of crystallization (Fig. 1). The torsion angles C12—O4—C11—O3, C12—O4—C11—N1, and N1—C1—C2—S1 are 3.2 (5), 5.5 (5), and 37.1 (5)°, respectively. The S1 atom is located 0.762 (6)Å from the least-squares plane defined by C2/C1/N1/C3. In the crystal structure, the (2R,4R)-3-(tert-butoxycarbonyl)-2- (3-chlorophenyl)thiazolidine-4-carboxylic acid molecules are linked by water molecules through intermolecular O–H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Experimental

Cysteine (0.121 g, 1.0 mmol) and appropriate aldehyde (1.0 mmol) in ethanol (25 ml) was stirred at room temperature for 8 h, and the solid separated was collected, washed with diethyl ether and dried to obtain (2RS,4R)-2-(3-chlorophenyl)thiazolidine-4-carboxylic acid (TCA). A mixture of TCA (1.0 mmol) and appropriate NaOH (10%, 1.0 mmol) in dioxane (25 ml) was stirred at ice-water temperature for 2 h. BOC2O (1.0 mmol) was added and stirred at ice-water temperature for 1 h and then at room temperature for 5 h. Most of the solvent was extracted and appropriate amount of water was added to adjust to neutral pH value. Ethyl acetate was added and extracted (50 ml), and washed with appropriate saturated aqueous solution of common salt, and dried with anhydrous magnesium sulfate. Solvent was extracted to dry to obtain whiter solids (2R,4R)-3-(tert-butoxycarbonyl)-2-(3-chlorophenyl)thiazolidine-4-carboxylic acid hydrate

Refinement

H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93–0.97 Å, O–H = 0.82–0.85 Å, and Uiso(H) = 1.2Ueq(C,O) or Uiso(H) = 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of the title compounds with atom labels and the 30% probability displacement ellipsoids for H atoms.
Fig. 2.
Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H18ClNO4S·H2OF(000) = 380
Mr = 361.83Dx = 1.367 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.2460 (16) Åθ = 9–12°
b = 5.9660 (12) ŵ = 0.36 mm1
c = 18.132 (4) ÅT = 293 K
β = 99.81 (3)°Block, colorless
V = 879.0 (3) Å30.20 × 0.17 × 0.15 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer2169 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
graphiteθmax = 25.3°, θmin = 1.1°
ω/2θ scansh = 0→9
Absorption correction: ψ scan (ABSCOR; Higashi, 1995)k = −7→7
Tmin = 0.932, Tmax = 0.948l = −21→21
3417 measured reflections3 standard reflections every 200 reflections
3182 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.167w = 1/[σ2(Fo2) + (0.0664P)2 + 0.2379P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3182 reflectionsΔρmax = 0.19 e Å3
208 parametersΔρmin = −0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1451 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.11 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.27417 (18)0.2513 (3)0.65551 (8)0.0556 (4)
Cl0.2514 (3)0.2819 (5)0.47181 (11)0.1051 (8)
N1−0.0494 (5)0.1770 (7)0.7725 (2)0.0353 (10)
O1−0.0704 (5)−0.2937 (7)0.8136 (2)0.0621 (12)
C1−0.1971 (6)0.0662 (9)0.7899 (3)0.0379 (13)
H1A−0.25630.16770.81850.045*
O2−0.2241 (5)−0.1623 (7)0.8928 (2)0.0531 (11)
H2C−0.1984−0.28050.91480.080*
C2−0.3015 (7)0.0154 (11)0.7147 (3)0.0519 (16)
H2A−0.4163−0.00050.71950.062*
H2B−0.2653−0.12220.69400.062*
O30.0636 (4)0.1875 (6)0.89459 (18)0.0422 (9)
C3−0.0548 (6)0.2640 (10)0.6970 (3)0.0415 (12)
H3A−0.02120.42170.70070.050*
O40.1931 (4)0.3384 (6)0.80485 (18)0.0407 (9)
C40.0541 (7)0.1417 (9)0.6516 (3)0.0395 (13)
C50.0950 (7)0.2482 (12)0.5896 (3)0.0505 (14)
H5C0.05310.38970.57590.061*
C60.1987 (8)0.1427 (12)0.5482 (3)0.0592 (17)
C70.2659 (8)−0.0660 (13)0.5677 (4)0.0651 (19)
H7A0.3366−0.13340.53940.078*
C80.2260 (8)−0.1720 (11)0.6297 (3)0.0590 (17)
H8A0.2689−0.31310.64330.071*
C90.1218 (7)−0.0688 (10)0.6721 (3)0.0487 (15)
H9A0.0970−0.14020.71440.058*
C10−0.1541 (6)−0.1503 (10)0.8333 (3)0.0390 (13)
C110.0700 (6)0.2343 (9)0.8296 (3)0.0366 (11)
C120.3466 (7)0.4010 (9)0.8560 (3)0.0424 (14)
C130.4314 (7)0.1879 (12)0.8896 (4)0.0663 (19)
H13A0.36870.12360.92430.099*
H13B0.54000.22380.91520.099*
H13C0.43880.08230.85040.099*
C140.4440 (8)0.5092 (12)0.8017 (4)0.0635 (19)
H14A0.38940.64380.78190.095*
H14B0.45160.40710.76150.095*
H14C0.55250.54510.82740.095*
C150.3093 (9)0.5670 (12)0.9141 (4)0.073 (2)
H15A0.25740.69730.88940.110*
H15B0.40990.61000.94570.110*
H15C0.23690.49890.94380.110*
O50.8493 (5)0.4638 (7)0.9669 (2)0.0585 (12)
H5B0.79430.48471.00190.070*
H5A0.90530.34460.96590.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0481 (8)0.0689 (11)0.0474 (8)0.0106 (9)0.0013 (6)0.0065 (8)
Cl0.1239 (18)0.130 (2)0.0752 (12)0.0239 (16)0.0570 (12)0.0417 (14)
N10.041 (2)0.034 (2)0.030 (2)−0.003 (2)0.0042 (19)−0.0031 (19)
O10.076 (3)0.049 (3)0.069 (3)0.013 (2)0.031 (2)0.005 (2)
C10.037 (3)0.038 (3)0.040 (3)−0.002 (2)0.011 (2)−0.004 (2)
O20.061 (3)0.048 (3)0.055 (2)0.005 (2)0.021 (2)0.012 (2)
C20.042 (3)0.061 (4)0.052 (4)−0.007 (3)0.005 (3)−0.006 (3)
O30.047 (2)0.046 (2)0.034 (2)−0.0027 (18)0.0101 (16)0.0039 (17)
C30.046 (3)0.035 (3)0.041 (3)−0.001 (3)0.001 (2)−0.001 (3)
O40.042 (2)0.041 (2)0.0399 (19)−0.0063 (18)0.0093 (16)−0.0023 (18)
C40.042 (3)0.040 (3)0.035 (3)−0.001 (3)0.002 (2)−0.002 (3)
C50.061 (4)0.046 (3)0.047 (3)0.001 (3)0.017 (3)0.003 (3)
C60.064 (4)0.070 (5)0.045 (4)0.000 (4)0.014 (3)0.006 (3)
C70.063 (4)0.082 (5)0.054 (4)0.011 (4)0.023 (3)−0.008 (4)
C80.077 (4)0.049 (4)0.055 (4)0.015 (3)0.023 (3)0.000 (3)
C90.059 (4)0.051 (4)0.039 (3)0.003 (3)0.016 (3)0.006 (3)
C100.035 (3)0.041 (3)0.042 (3)−0.003 (3)0.006 (2)−0.002 (3)
C110.044 (3)0.027 (3)0.041 (3)0.006 (3)0.012 (2)0.000 (2)
C120.037 (3)0.039 (3)0.051 (3)−0.010 (3)0.004 (3)−0.001 (3)
C130.044 (3)0.066 (5)0.086 (5)0.003 (3)0.004 (3)0.023 (4)
C140.052 (4)0.059 (4)0.080 (5)−0.014 (3)0.009 (4)0.017 (4)
C150.079 (5)0.067 (5)0.071 (5)−0.021 (4)0.004 (4)−0.021 (4)
O50.079 (3)0.047 (3)0.054 (3)0.008 (2)0.024 (2)0.006 (2)

Geometric parameters (Å, °)

S1—C21.807 (6)C5—H5C0.9300
S1—C31.838 (5)C6—C71.384 (10)
Cl—C61.733 (6)C7—C81.379 (9)
N1—C111.346 (6)C7—H7A0.9300
N1—C31.457 (6)C8—C91.390 (8)
N1—C11.466 (6)C8—H8A0.9300
O1—C101.192 (6)C9—H9A0.9300
C1—C21.513 (7)C12—C151.515 (8)
C1—C101.524 (7)C12—C141.516 (8)
C1—H1A0.9800C12—C131.527 (8)
O2—C101.309 (6)C13—H13A0.9600
O2—H2C0.8200C13—H13B0.9600
C2—H2A0.9700C13—H13C0.9600
C2—H2B0.9700C14—H14A0.9600
O3—C111.221 (6)C14—H14B0.9600
C3—C41.505 (7)C14—H14C0.9600
C3—H3A0.9800C15—H15A0.9600
O4—C111.332 (6)C15—H15B0.9600
O4—C121.483 (6)C15—H15C0.9600
C4—C51.383 (8)O5—H5B0.8499
C4—C91.398 (8)O5—H5A0.8500
C5—C61.382 (8)
C2—S1—C390.2 (3)C7—C8—H8A119.9
C11—N1—C3122.2 (4)C9—C8—H8A119.9
C11—N1—C1118.3 (4)C8—C9—C4120.5 (5)
C3—N1—C1118.0 (4)C8—C9—H9A119.7
N1—C1—C2105.2 (4)C4—C9—H9A119.7
N1—C1—C10111.4 (4)O1—C10—O2124.6 (5)
C2—C1—C10110.0 (5)O1—C10—C1123.3 (5)
N1—C1—H1A110.0O2—C10—C1112.1 (5)
C2—C1—H1A110.0O3—C11—O4126.3 (5)
C10—C1—H1A110.0O3—C11—N1122.6 (5)
C10—O2—H2C109.5O4—C11—N1111.1 (4)
C1—C2—S1105.6 (4)O4—C12—C15110.3 (5)
C1—C2—H2A110.6O4—C12—C14101.0 (4)
S1—C2—H2A110.6C15—C12—C14111.5 (5)
C1—C2—H2B110.6O4—C12—C13108.9 (4)
S1—C2—H2B110.6C15—C12—C13113.6 (5)
H2A—C2—H2B108.7C14—C12—C13110.9 (5)
N1—C3—C4114.5 (4)C12—C13—H13A109.5
N1—C3—S1103.9 (3)C12—C13—H13B109.5
C4—C3—S1113.2 (4)H13A—C13—H13B109.5
N1—C3—H3A108.3C12—C13—H13C109.5
C4—C3—H3A108.3H13A—C13—H13C109.5
S1—C3—H3A108.3H13B—C13—H13C109.5
C11—O4—C12121.7 (4)C12—C14—H14A109.5
C5—C4—C9119.1 (5)C12—C14—H14B109.5
C5—C4—C3118.2 (5)H14A—C14—H14B109.5
C9—C4—C3122.6 (5)C12—C14—H14C109.5
C6—C5—C4119.5 (6)H14A—C14—H14C109.5
C6—C5—H5C120.3H14B—C14—H14C109.5
C4—C5—H5C120.3C12—C15—H15A109.5
C5—C6—C7121.9 (6)C12—C15—H15B109.5
C5—C6—Cl118.6 (5)H15A—C15—H15B109.5
C7—C6—Cl119.4 (5)C12—C15—H15C109.5
C8—C7—C6118.6 (6)H15A—C15—H15C109.5
C8—C7—H7A120.7H15B—C15—H15C109.5
C6—C7—H7A120.7H5B—O5—H5A120.0
C7—C8—C9120.3 (6)
C11—N1—C1—C2−177.5 (5)C4—C5—C6—Cl−178.7 (5)
C3—N1—C1—C216.0 (6)C5—C6—C7—C80.9 (11)
C11—N1—C1—C10−58.3 (6)Cl—C6—C7—C8178.4 (5)
C3—N1—C1—C10135.3 (5)C6—C7—C8—C9−0.8 (10)
N1—C1—C2—S1−37.1 (5)C7—C8—C9—C41.1 (10)
C10—C1—C2—S1−157.2 (4)C5—C4—C9—C8−1.5 (9)
C3—S1—C2—C139.2 (4)C3—C4—C9—C8−177.9 (5)
C11—N1—C3—C482.2 (6)N1—C1—C10—O1−51.4 (7)
C1—N1—C3—C4−111.8 (5)C2—C1—C10—O164.9 (7)
C11—N1—C3—S1−153.8 (4)N1—C1—C10—O2130.8 (5)
C1—N1—C3—S112.1 (5)C2—C1—C10—O2−112.9 (5)
C2—S1—C3—N1−29.0 (4)C12—O4—C11—O33.2 (8)
C2—S1—C3—C495.7 (4)C12—O4—C11—N1−174.5 (4)
N1—C3—C4—C5−161.1 (5)C3—N1—C11—O3169.7 (5)
S1—C3—C4—C580.0 (6)C1—N1—C11—O33.9 (7)
N1—C3—C4—C915.4 (8)C3—N1—C11—O4−12.4 (6)
S1—C3—C4—C9−103.5 (6)C1—N1—C11—O4−178.3 (4)
C9—C4—C5—C61.5 (9)C11—O4—C12—C15−62.5 (6)
C3—C4—C5—C6178.1 (5)C11—O4—C12—C14179.5 (5)
C4—C5—C6—C7−1.2 (10)C11—O4—C12—C1362.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2C···O5i0.821.802.620 (6)177
O5—H5A···O3ii0.852.202.890 (5)139
O5—H5B···O3iii0.852.372.827 (5)114

Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5054).

References

  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kallen, R. G. (1971). J. Am. Chem. Soc.93, 6236–6248. [PubMed]
  • Seki, M., Hatsuda, M., Mori, Y., Yoshida, S. I., Yamada, S. I. & Shimizu, T. (2004). Chem. Eur. J.10, 6102–6110. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Z.-C., Ma, G.-Y., Lv, P.-C., Li, H.-Q., Xiao, Z.-P. & Zhu, H.-L. (2009). Eur. J. Med. Chem.44, 3903-3908. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography