PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2949.
Published online 2010 October 30. doi:  10.1107/S160053681004273X
PMCID: PMC3009143

7-Chloro-1,2-dihydro­furo[2,3-c]isoquinolin-5-amine

Abstract

In the title compound, C11H9ClN2O, the fused-ring system is essentially planar, with a maximum deviation of 0.0323 (16) Å. In the crystal, mol­ecules are connected by N—H(...)O hydrogen bonds forming a zigzag chain along the c axis. Mol­ecules are further stacked along the a axis through weak π–π inter­actions, the shortest distance between ring centroids being 3.6476 (8) Å.

Related literature

For background to this work and the synthesis of the title compound, see: Okuda et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2949-scheme1.jpg

Experimental

Crystal data

  • C11H9ClN2O
  • M r = 220.66
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2949-efi1.jpg
  • a = 7.2948 (6) Å
  • b = 12.0703 (11) Å
  • c = 10.8869 (8) Å
  • V = 958.60 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 200 K
  • 0.40 × 0.25 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPID II diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.896, T max = 0.971
  • 11594 measured reflections
  • 2776 independent reflections
  • 2531 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.083
  • S = 1.11
  • 2776 reflections
  • 144 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1311 Friedel pairs
  • Flack parameter: −0.02 (5)

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004273X/gk2312sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004273X/gk2312Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from Japan Society for the Promotion of Science.

supplementary crystallographic information

Comment

As an extension of our work to develop complex heterocyclic skeletons for potential pharmaceutics in one step using Truce-Smiles rearrangement, we got interested in the reaction of 2-(3-cyanopropoxy)benzonitriles with bases (Okuda et al., 2010). As is well established, the key step of the Truce-Smiles rearrangement is the ipso attack of an incoming nucleophile. So electron withdrawing chlorine atom at 5-position seemed to be favorable for this rearrangement reaction. The product, 7-chloro-1,2-dihydrofuro[2,3-c]isoquinolin-5-amine, was obtained in 83% yield, which was higher than the product yield of 1,2-dihydrofuro[2,3-c]isoquinolin-5-amine (60%) from 5-unsubsituted starting material as we had assumed.

In the title compound, C11H9ClN2O, the fused three-ring system is essentially planar with a maximum deviation of 0.0323 (16) Å at atom C4. In the crystal structure, the molecules are connected by an N—H···O hydrogen bond, forming a zigzag chain along the c axis. The molecules are further stacked along the a axis through weak π–π interactions between the isoquinoline ring systems [Cg1···Cg1 (-1/2 + x, 3/2 - y, z) = 4.0137 (8) Å, Cg1···Cg2 (1/2 + x, 3/2 - y, z) = 3.6858 (8) Å and Cg2···Cg2 (1/2 + x, 3/2 - y, z) = 3.6476 (8) Å; Cg1 and Cg2 are the centroids of N1/C1/C11/C6/C5/C2 and C6–C11 rings, respectively.]

Experimental

Detailed experimental procedure of the synthesis of 7-chloro-1,2-dihydrofuro[2,3-c]isoquinolin-5-amine (m.p. 527–528 K from ethyl acetate) from 5-chloro-2-(3-cyanopropoxy)benzonitrile was already described in our precedent report (Okuda et al., 2010). Single crystals suitable for X-ray diffraction were obtained from an ethyl acetate solution.

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were found in a difference Fourier map and refined isotropically. The refined N—H distancea are 0.80 (3) anf 0.82 (3) Å. The Hooft y parameter value is -0.002 (13).

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
Fig. 2.
A packing diagram of the title compound, showing a molecular chain running along the c axis. The dashed lines indicate N—H···O hydrogen bonds. C-bound H atoms have been omitted.

Crystal data

C11H9ClN2OF(000) = 456.00
Mr = 220.66Dx = 1.529 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2nCell parameters from 10138 reflections
a = 7.2948 (6) Åθ = 3.3–30.0°
b = 12.0703 (11) ŵ = 0.37 mm1
c = 10.8869 (8) ÅT = 200 K
V = 958.60 (14) Å3Platelet, yellow
Z = 40.40 × 0.25 × 0.08 mm

Data collection

Rigaku R-AXIS RAPID II diffractometer2531 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.016
ω scansθmax = 30.0°
Absorption correction: numerical (NUMABS; Higashi, 1999)h = −10→9
Tmin = 0.896, Tmax = 0.971k = −16→16
11594 measured reflectionsl = −15→15
2776 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.056P)2 + 0.0168P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2776 reflectionsΔρmax = 0.42 e Å3
144 parametersΔρmin = −0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1311 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.02 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.20651 (5)0.70539 (3)0.83910 (3)0.04205 (11)
O10.5523 (2)0.71804 (10)0.14408 (11)0.0454 (3)
N10.49290 (17)0.58990 (10)0.29743 (12)0.0364 (3)
N20.4320 (3)0.46639 (12)0.4512 (2)0.0522 (4)
C10.44057 (18)0.57365 (11)0.41337 (13)0.0328 (3)
C20.49833 (18)0.69629 (12)0.26182 (13)0.0317 (3)
C30.5446 (2)0.83764 (15)0.12840 (14)0.0431 (3)
H3A0.45510.85690.06350.052*
H3B0.66640.86620.10370.052*
C40.4862 (2)0.88976 (13)0.25161 (14)0.0375 (3)
H4A0.58390.93760.28580.045*
H4B0.37200.93330.24300.045*
C50.45715 (16)0.78864 (9)0.32871 (13)0.0267 (2)
C60.39999 (16)0.77295 (10)0.45094 (12)0.0239 (2)
C70.35257 (17)0.86096 (10)0.53113 (12)0.0279 (2)
H70.36190.93530.50300.033*
C80.29337 (17)0.84059 (12)0.64864 (12)0.0302 (3)
H80.26020.90000.70130.036*
C90.28264 (17)0.73061 (12)0.68982 (13)0.0297 (3)
C100.32916 (18)0.64268 (11)0.61666 (12)0.0297 (3)
H100.32150.56920.64740.036*
C110.38839 (17)0.66225 (10)0.49559 (12)0.0258 (2)
H2A0.430 (3)0.4520 (19)0.525 (2)0.054 (6)*
H2B0.466 (4)0.418 (2)0.406 (2)0.069 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.04108 (18)0.0588 (2)0.02626 (15)0.00458 (13)0.00713 (15)0.00747 (16)
O10.0576 (7)0.0536 (7)0.0249 (5)0.0026 (5)0.0091 (5)−0.0055 (4)
N10.0402 (6)0.0329 (6)0.0361 (6)0.0028 (4)0.0018 (5)−0.0093 (5)
N20.0730 (10)0.0248 (6)0.0588 (10)0.0045 (6)0.0114 (8)−0.0006 (6)
C10.0332 (6)0.0269 (6)0.0382 (7)0.0012 (5)−0.0001 (5)−0.0036 (5)
C20.0300 (6)0.0396 (7)0.0254 (6)0.0021 (5)0.0013 (5)−0.0046 (5)
C30.0492 (8)0.0533 (9)0.0267 (6)0.0020 (7)0.0044 (6)0.0073 (6)
C40.0435 (7)0.0388 (7)0.0301 (6)0.0003 (6)0.0057 (6)0.0078 (5)
C50.0249 (5)0.0298 (5)0.0254 (6)0.0010 (4)0.0018 (5)0.0003 (5)
C60.0208 (5)0.0251 (5)0.0257 (5)0.0002 (4)−0.0004 (4)−0.0004 (4)
C70.0291 (5)0.0253 (6)0.0292 (6)0.0010 (4)0.0021 (5)0.0003 (4)
C80.0287 (6)0.0335 (6)0.0285 (6)0.0018 (4)0.0013 (5)−0.0058 (5)
C90.0244 (6)0.0420 (7)0.0227 (5)0.0000 (5)0.0015 (4)0.0028 (5)
C100.0287 (5)0.0292 (6)0.0312 (6)0.0002 (4)0.0005 (5)0.0046 (5)
C110.0247 (5)0.0260 (5)0.0268 (5)0.0001 (4)−0.0016 (4)0.0006 (5)

Geometric parameters (Å, °)

Cl1—C91.7442 (14)C4—C51.4964 (19)
O1—C21.3664 (19)C4—H4A0.9900
O1—C31.455 (2)C4—H4B0.9900
N1—C11.3332 (19)C5—C61.4074 (19)
N1—C21.3420 (19)C6—C71.4178 (16)
N2—C11.3599 (19)C6—C111.4244 (17)
N2—H2A0.82 (3)C7—C81.3725 (19)
N2—H2B0.80 (3)C7—H70.9500
C1—C111.4457 (18)C8—C91.403 (2)
C2—C51.3649 (18)C8—H80.9500
C3—C41.542 (2)C9—C101.370 (2)
C3—H3A0.9900C10—C111.4070 (18)
C3—H3B0.9900C10—H100.9500
C2—O1—C3106.83 (11)H4A—C4—H4B109.3
C1—N1—C2115.01 (12)C2—C5—C6117.37 (12)
C1—N2—H2A119.8 (17)C2—C5—C4109.61 (13)
C1—N2—H2B119.1 (18)C6—C5—C4133.01 (12)
H2A—N2—H2B117 (2)C5—C6—C7123.62 (11)
N1—C1—N2116.10 (14)C5—C6—C11117.81 (11)
N1—C1—C11123.56 (12)C7—C6—C11118.57 (11)
N2—C1—C11120.31 (14)C8—C7—C6121.09 (11)
N1—C2—C5128.38 (14)C8—C7—H7119.5
N1—C2—O1117.60 (12)C6—C7—H7119.5
C5—C2—O1114.02 (13)C7—C8—C9119.00 (12)
O1—C3—C4108.27 (11)C7—C8—H8120.5
O1—C3—H3A110.0C9—C8—H8120.5
C4—C3—H3A110.0C10—C9—C8122.23 (13)
O1—C3—H3B110.0C10—C9—Cl1119.05 (11)
C4—C3—H3B110.0C8—C9—Cl1118.72 (11)
H3A—C3—H3B108.4C9—C10—C11119.39 (12)
C5—C4—C3101.21 (12)C9—C10—H10120.3
C5—C4—H4A111.5C11—C10—H10120.3
C3—C4—H4A111.5C10—C11—C6119.69 (11)
C5—C4—H4B111.5C10—C11—C1122.46 (11)
C3—C4—H4B111.5C6—C11—C1117.84 (12)
C2—N1—C1—N2179.28 (16)C5—C6—C7—C8178.39 (12)
C2—N1—C1—C111.50 (19)C11—C6—C7—C8−1.19 (18)
C1—N1—C2—C5−0.1 (2)C6—C7—C8—C90.94 (19)
C1—N1—C2—O1179.54 (13)C7—C8—C9—C100.0 (2)
C3—O1—C2—N1179.39 (14)C7—C8—C9—Cl1−179.77 (10)
C3—O1—C2—C5−0.90 (17)C8—C9—C10—C11−0.57 (19)
C2—O1—C3—C42.07 (17)Cl1—C9—C10—C11179.17 (10)
O1—C3—C4—C5−2.34 (17)C9—C10—C11—C60.29 (18)
N1—C2—C5—C6−0.5 (2)C9—C10—C11—C1179.68 (12)
O1—C2—C5—C6179.87 (11)C5—C6—C11—C10−179.03 (11)
N1—C2—C5—C4178.97 (15)C7—C6—C11—C100.57 (17)
O1—C2—C5—C4−0.69 (17)C5—C6—C11—C11.54 (16)
C3—C4—C5—C21.84 (16)C7—C6—C11—C1−178.85 (11)
C3—C4—C5—C6−178.84 (13)N1—C1—C11—C10178.34 (13)
C2—C5—C6—C7−179.90 (12)N2—C1—C11—C100.6 (2)
C4—C5—C6—C70.8 (2)N1—C1—C11—C6−2.26 (18)
C2—C5—C6—C11−0.32 (17)N2—C1—C11—C6−179.95 (15)
C4—C5—C6—C11−179.60 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.82 (2)2.43 (2)3.062 (2)134 (2)

Symmetry codes: (i) −x+1, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2312).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Okuda, K., Yoshida, M., Hirota, T. & Sasaki, K. (2010). Chem. Pharm. Bull.58, 363–368. [PubMed]
  • Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography