PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3030.
Published online 2010 October 31. doi:  10.1107/S1600536810043667
PMCID: PMC3009140

rac-1-(6-Hy­droxy-3,6-dimethyl-4-phenyl-4,5,6,7-tetra­hydro-2,1-benzoxazol-5-yl)ethanone

Abstract

The structure of the title compound, C17H19NO3, is of inter­est with respect to anti­bacterial properties, anti­biotic properties and biological activity. The structure displays inter­molecular O—H(...)N hydrogen bonding.

Related literature

For general background to Schiff bases and their uses, see: Lau et al. (1999 [triangle]); Shawali et al. (1985 [triangle]); Raman et al. (2003 [triangle]); Yuxia et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3030-scheme1.jpg

Experimental

Crystal data

  • C17H19NO3
  • M r = 285.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3030-efi1.jpg
  • a = 16.1518 (9) Å
  • b = 5.5353 (3) Å
  • c = 17.2956 (9) Å
  • β = 103.496 (1)°
  • V = 1503.61 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.975, T max = 0.983
  • 16629 measured reflections
  • 3724 independent reflections
  • 2840 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.141
  • S = 1.00
  • 3724 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043667/pb2043sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043667/pb2043Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Victor N. Khrustalev for fruitful discussions and help in this work.

supplementary crystallographic information

Comment

Schiff bases are characterized by the –CH═N– (imine) group which is impotantant in elucidating the mechanism of transamination and racemization reactions in biological systems (Lau et al., 1999; Shawali et al., 1985). Due to the great flexibility and diverse structural aspects, a wide range of Schiff bases have been synthesized and their complexation behaviour studied (Raman et al., 2003). Literature survey shows that Schiff bases show bacteriostatic and bactericidal activity (Yuxia et al., 2002). Antibacterial, antifungal, antitumor, anticancer activity has been reported and they are also active against a wide range of organisms. We have synthesized the title compound, (rac)-5-acetyl-6-hydroxy-3,6-dimethyl-4-phenyl-2H-4,5,6,7-tetrahydrobenzo[c]isoxazole (I), and its structure is reported here. (I) have good antibacterial properties. In the title compound (Fig. 1) all bond lengths and angles are normal. Intermolecular O—H···N hydrogen bonds (Table 1; Fig.2) link molecules into centrosymmetric dimer. The cystal packing is further stablized by van der Waals forces. The two [(C2(R),C4(R)] of three stereogenic centres of tetrahydrobenzo[c]izoxazole moiety are of the same chirality. As the crystal crystallizes in the centrosymmetric space group, the racemate (1:1) is present.

Experimental

(rac)-2,4-diacetyl-5-hydroxy-5-methyl-3-phenylcyclohexanon (20 mmol), hydroxylamine hydrochloride (20 mmol) were dissolved in 20 ml ethanol. The mixture was stirred at 345–350 K within 10 h. After cooling to a room temperature obtained white crystals. The crystals was filtered and washed with ethanol. Have been then dissolved in ethanol (50 ml) and recrystallized to yield colourless block-shaped crystals of the title compound.The melting point 140 °C.

Refinement

The H atoms of the OH and NH groups of the molecule (I) were localized in the difference Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3 group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other H atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].)]. 24 reflections, with experimentally observed F2 deviating significantly from the theoretically calculated F2, were omitted from the refinement. Moreover, 76 reflections were not measured because the angle limits.

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme.Displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
A hydrogen-bonded (dashed lines) ribbon in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C17H19NO3F(000) = 608
Mr = 285.33Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5396 reflections
a = 16.1518 (9) Åθ = 2.4–28.2°
b = 5.5353 (3) ŵ = 0.09 mm1
c = 17.2956 (9) ÅT = 296 K
β = 103.496 (1)°Prism, colourless
V = 1503.61 (14) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3724 independent reflections
Radiation source: fine-focus sealed tube2840 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −21→21
Tmin = 0.975, Tmax = 0.983k = −7→7
16629 measured reflectionsl = −23→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.141H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0748P)2 + 0.3882P] where P = (Fo2 + 2Fc2)/3
3724 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.01908 (8)1.0929 (3)0.62899 (8)0.0564 (4)
O10.03792 (7)0.9296 (3)0.69321 (7)0.0604 (3)
C10.11922 (9)0.8524 (3)0.70211 (9)0.0487 (4)
C1A0.15432 (8)0.9589 (3)0.64670 (8)0.0396 (3)
C20.24052 (8)0.9339 (2)0.62856 (7)0.0345 (3)
H2A0.24270.77680.60300.041*
C30.25009 (8)1.1335 (2)0.56826 (8)0.0359 (3)
H3A0.25451.28720.59700.043*
C40.16899 (9)1.1510 (2)0.49910 (8)0.0385 (3)
O30.14932 (6)0.90993 (17)0.47197 (6)0.0418 (2)
H3B0.10680.91060.43520.063*
C50.09667 (9)1.2536 (3)0.53313 (9)0.0467 (3)
H5A0.10891.42010.54920.056*
H5B0.04361.24970.49280.056*
C5A0.08853 (9)1.1061 (3)0.60280 (8)0.0431 (3)
C60.14961 (12)0.6749 (4)0.76606 (11)0.0655 (5)
H6A0.10530.64340.79330.098*
H6B0.19860.73840.80300.098*
H6C0.16470.52750.74350.098*
C70.31251 (8)0.9425 (2)0.70323 (8)0.0365 (3)
C80.31689 (10)1.1287 (3)0.75728 (9)0.0529 (4)
H8A0.27671.25210.74680.063*
C90.38009 (11)1.1345 (4)0.82687 (10)0.0621 (5)
H9A0.38181.26000.86300.075*
C100.44022 (10)0.9549 (4)0.84244 (10)0.0601 (5)
H10A0.48230.95740.88940.072*
C110.43813 (10)0.7719 (4)0.78874 (11)0.0610 (5)
H11A0.47960.65200.79870.073*
C120.37398 (9)0.7651 (3)0.71932 (9)0.0473 (3)
H12A0.37260.63940.68340.057*
C130.33153 (9)1.1072 (3)0.53928 (8)0.0445 (3)
O20.37936 (8)1.2779 (3)0.54585 (9)0.0725 (4)
C140.35025 (12)0.8785 (4)0.50168 (12)0.0625 (5)
H14A0.40380.89280.48700.094*
H14B0.30600.84720.45510.094*
H14C0.35300.74770.53870.094*
C150.18200 (11)1.3114 (3)0.43155 (9)0.0532 (4)
H15A0.13051.31630.39050.080*
H15B0.22731.24740.41030.080*
H15C0.19641.47180.45120.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0351 (6)0.0810 (10)0.0512 (7)0.0097 (6)0.0059 (5)−0.0093 (7)
O10.0367 (6)0.0925 (9)0.0544 (6)0.0057 (6)0.0159 (5)0.0004 (6)
C10.0355 (7)0.0662 (10)0.0456 (8)0.0015 (7)0.0119 (6)−0.0035 (7)
C1A0.0320 (6)0.0459 (7)0.0394 (6)0.0020 (5)0.0050 (5)−0.0050 (6)
C20.0307 (6)0.0357 (6)0.0359 (6)0.0021 (5)0.0054 (5)−0.0022 (5)
C30.0344 (6)0.0332 (6)0.0373 (6)−0.0010 (5)0.0025 (5)−0.0031 (5)
C40.0373 (6)0.0355 (7)0.0386 (6)0.0015 (5)0.0005 (5)−0.0021 (5)
O30.0384 (5)0.0391 (5)0.0426 (5)0.0001 (4)−0.0015 (4)−0.0072 (4)
C50.0412 (7)0.0453 (8)0.0479 (8)0.0106 (6)−0.0014 (6)−0.0046 (6)
C5A0.0326 (6)0.0512 (8)0.0422 (7)0.0062 (6)0.0018 (5)−0.0107 (6)
C60.0571 (10)0.0857 (13)0.0595 (10)0.0068 (9)0.0253 (8)0.0179 (9)
C70.0293 (6)0.0426 (7)0.0375 (6)0.0024 (5)0.0072 (5)0.0026 (5)
C80.0445 (8)0.0609 (10)0.0484 (8)0.0134 (7)0.0008 (6)−0.0109 (7)
C90.0518 (9)0.0840 (13)0.0460 (8)0.0013 (9)0.0019 (7)−0.0165 (8)
C100.0404 (8)0.0890 (13)0.0451 (8)−0.0007 (8)−0.0016 (6)0.0098 (9)
C110.0415 (8)0.0714 (11)0.0644 (10)0.0161 (8)0.0010 (7)0.0143 (9)
C120.0398 (7)0.0487 (8)0.0516 (8)0.0091 (6)0.0073 (6)0.0031 (7)
C130.0356 (7)0.0531 (8)0.0416 (7)−0.0058 (6)0.0028 (5)0.0071 (6)
O20.0510 (7)0.0752 (9)0.0902 (9)−0.0263 (6)0.0141 (6)−0.0017 (7)
C140.0567 (10)0.0662 (11)0.0734 (11)0.0039 (8)0.0327 (9)0.0002 (9)
C150.0560 (9)0.0499 (9)0.0483 (8)−0.0014 (7)0.0013 (7)0.0101 (7)

Geometric parameters (Å, °)

N1—C5A1.306 (2)C6—H6B0.9600
N1—O11.4090 (19)C6—H6C0.9600
O1—C11.3550 (18)C7—C81.382 (2)
C1—C1A1.357 (2)C7—C121.3779 (19)
C1—C61.475 (2)C8—C91.385 (2)
C1A—C5A1.4117 (19)C8—H8A0.9300
C1A—C21.5032 (18)C9—C101.372 (3)
C2—C71.5236 (17)C9—H9A0.9300
C2—C31.5514 (18)C10—C111.370 (3)
C2—H2A0.9800C10—H10A0.9300
C3—C131.520 (2)C11—C121.391 (2)
C3—C41.5572 (17)C11—H11A0.9300
C3—H3A0.9800C12—H12A0.9300
C4—O31.4257 (16)C13—O21.2089 (19)
C4—C151.520 (2)C13—C141.486 (2)
C4—C51.534 (2)C14—H14A0.9600
O3—H3B0.8200C14—H14B0.9600
C5—C5A1.487 (2)C14—H14C0.9600
C5—H5A0.9700C15—H15A0.9600
C5—H5B0.9700C15—H15B0.9600
C6—H6A0.9600C15—H15C0.9600
C5A—N1—O1105.32 (12)H6A—C6—H6B109.5
C1—O1—N1108.49 (12)C1—C6—H6C109.5
O1—C1—C1A109.66 (14)H6A—C6—H6C109.5
O1—C1—C6116.05 (14)H6B—C6—H6C109.5
C1A—C1—C6134.27 (14)C8—C7—C12118.30 (13)
C1—C1A—C5A104.14 (13)C8—C7—C2120.33 (12)
C1—C1A—C2131.88 (13)C12—C7—C2121.36 (12)
C5A—C1A—C2123.94 (13)C7—C8—C9121.07 (15)
C1A—C2—C7112.40 (11)C7—C8—H8A119.5
C1A—C2—C3108.51 (10)C9—C8—H8A119.5
C7—C2—C3111.81 (10)C8—C9—C10119.88 (17)
C1A—C2—H2A108.0C8—C9—H9A120.1
C7—C2—H2A108.0C10—C9—H9A120.1
C3—C2—H2A108.0C11—C10—C9119.92 (14)
C13—C3—C2112.53 (11)C11—C10—H10A120.0
C13—C3—C4112.97 (11)C9—C10—H10A120.0
C2—C3—C4111.28 (10)C10—C11—C12120.04 (15)
C13—C3—H3A106.5C10—C11—H11A120.0
C2—C3—H3A106.5C12—C11—H11A120.0
C4—C3—H3A106.5C7—C12—C11120.76 (15)
O3—C4—C15110.73 (12)C7—C12—H12A119.6
O3—C4—C5109.96 (12)C11—C12—H12A119.6
C15—C4—C5109.44 (12)O2—C13—C14121.07 (15)
O3—C4—C3106.10 (10)O2—C13—C3118.51 (15)
C15—C4—C3112.61 (12)C14—C13—C3120.40 (13)
C5—C4—C3107.92 (11)C13—C14—H14A109.5
C4—O3—H3B109.5C13—C14—H14B109.5
C5A—C5—C4109.10 (11)H14A—C14—H14B109.5
C5A—C5—H5A109.9C13—C14—H14C109.5
C4—C5—H5A109.9H14A—C14—H14C109.5
C5A—C5—H5B109.9H14B—C14—H14C109.5
C4—C5—H5B109.9C4—C15—H15A109.5
H5A—C5—H5B108.3C4—C15—H15B109.5
N1—C5A—C1A112.39 (14)H15A—C15—H15B109.5
N1—C5A—C5123.88 (13)C4—C15—H15C109.5
C1A—C5A—C5123.71 (13)H15A—C15—H15C109.5
C1—C6—H6A109.5H15B—C15—H15C109.5
C1—C6—H6B109.5
C5A—N1—O1—C1−0.02 (17)O1—N1—C5A—C1A−0.19 (17)
N1—O1—C1—C1A0.22 (18)O1—N1—C5A—C5178.08 (13)
N1—O1—C1—C6−178.75 (15)C1—C1A—C5A—N10.32 (17)
O1—C1—C1A—C5A−0.32 (17)C2—C1A—C5A—N1178.46 (13)
C6—C1—C1A—C5A178.4 (2)C1—C1A—C5A—C5−177.95 (14)
O1—C1—C1A—C2−178.25 (14)C2—C1A—C5A—C50.2 (2)
C6—C1—C1A—C20.5 (3)C4—C5—C5A—N1−157.04 (14)
C1—C1A—C2—C7−46.1 (2)C4—C5—C5A—C1A21.04 (19)
C5A—C1A—C2—C7136.34 (14)C1A—C2—C7—C8−51.35 (18)
C1—C1A—C2—C3−170.25 (15)C3—C2—C7—C870.98 (16)
C5A—C1A—C2—C312.17 (18)C1A—C2—C7—C12127.79 (14)
C1A—C2—C3—C13−173.88 (11)C3—C2—C7—C12−109.88 (15)
C7—C2—C3—C1361.59 (14)C12—C7—C8—C9−1.6 (2)
C1A—C2—C3—C4−45.93 (14)C2—C7—C8—C9177.60 (16)
C7—C2—C3—C4−170.45 (10)C7—C8—C9—C100.8 (3)
C13—C3—C4—O379.39 (14)C8—C9—C10—C110.7 (3)
C2—C3—C4—O3−48.32 (14)C9—C10—C11—C12−1.5 (3)
C13—C3—C4—C15−41.88 (16)C8—C7—C12—C110.8 (2)
C2—C3—C4—C15−169.60 (12)C2—C7—C12—C11−178.33 (14)
C13—C3—C4—C5−162.78 (12)C10—C11—C12—C70.7 (3)
C2—C3—C4—C569.50 (14)C2—C3—C13—O2−125.57 (14)
O3—C4—C5—C5A62.22 (14)C4—C3—C13—O2107.38 (16)
C15—C4—C5—C5A−175.95 (12)C2—C3—C13—C1456.16 (17)
C3—C4—C5—C5A−53.09 (15)C4—C3—C13—C14−70.90 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···N1i0.822.082.8689 (17)162

Symmetry codes: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2043).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223–232.
  • Raman, N., Muthuraj, V., Ravichandran, S. & Kulandaisamy, A. (2003). Proc. Indian Acad. Sci.115, 161–167.
  • Shawali, A. S., Harb, N. M. S. & Badahdah, K. O. (1985). J. Heterocycl. Chem.22, 1397–1403.
  • Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yuxia, Z., Tao, Z., Wanshan, M., Haibin, Z. & Suifeng, C. (2002). Hauxue Shiji, 24, 117.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography