PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1481.
Published online 2010 October 30. doi:  10.1107/S1600536810042455
PMCID: PMC3009139

Diazido­bis­[4,4,5,5-tetra­methyl-2-(1,3-thia­zol-2-yl)-2-imidazoline-1-oxyl 3-oxide-κ2 N 1,O 3]nickel(II)

Abstract

In the title compound, [Ni(N3)2(C10H14N3O2S)2], the NiII atom lies on an inversion center and adopts a distorted trans-NiO2N4 octa­hedral geometry, coordinated by two N,O-bidentate 4,4,5,5-tetra­methyl-2-(5-methyl­imidazol-4-yl)-2-imidazoline-1-oxyl 3-oxide nitronyl nitroxide radical ligands and two monodentate azide anions.

Related literature

For general background to mol­ecular magnetic materials and metal-radical magnetic materials, see: Vostrikova et al. (2000 [triangle]); Fegy et al. (1998 [triangle]); Kahn et al. (2000 [triangle]); Omata et al. (2001 [triangle]); Yamamoto et al. (2001 [triangle]); Fursova et al. (2003 [triangle]); Sroh et al. (2003 [triangle]); Chang et al. (2009 [triangle]); Schatzschneider et al. (2001 [triangle]). For the synthesis of nitronyl nitroxide radical ligands and the title compound, see: Ullman et al. (1970 [triangle], 1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1481-scheme1.jpg

Experimental

Crystal data

  • [Ni(N3)2(C10H14N3O2S)2]
  • M r = 623.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1481-efi1.jpg
  • a = 9.9212 (7) Å
  • b = 12.1732 (8) Å
  • c = 11.1795 (8) Å
  • β = 102.695 (1)°
  • V = 1317.17 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 291 K
  • 0.40 × 0.22 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.703, T max = 0.874
  • 7812 measured reflections
  • 3005 independent reflections
  • 2834 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.065
  • S = 1.06
  • 3005 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042455/sj5040sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042455/sj5040Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation and Basic Research Program of Henan province (Nos. 092300410195 and 092300410240).

supplementary crystallographic information

Comment

The synthesis and study of transition metal complexes incorporating organic free radicals is a major research focus in the field of molecular magnetism (Vostrikova et al., 2000; Fegy et al., 1998; Kahn et al., 2000; Omata et al., 2001). In this field, nitronyl nitroxides acting as useful paramagnetic building blocks have been extensively used to assemble molecular magnetic materials, because many of them are good stable spin carriers even when coordinated to metal ions (Yamamoto et al., 2001; Fursova et al., 2003; Sroh et al., 2003; Chang et al., 2009; Schatzschneider et al., 2001). We report herein the synthesis and crystal structure of one such nickel complex.

The asymmetric unit of the title compound (Fig. 1) contains half molecule. The NiII atom, lying on a an inversion center, is six-coordinated in a distorted octahedral geometry by two N atoms and two O atoms from two 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2- imidazoline-1-oxyl-3-oxide nitronyl nitroxide radical ligands and two N atoms from two azide anions.

Experimental

The nitronyl nitroxide radical(2-(2'-thiazole)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide)was synthesized according to literature procedures (Ullman et al. 1970; Ullman et al. 1972). A mixed solution of nitronyl nitroxide radical ligands (2.00 mmol) and Ni(Ac)2.4H2O (1 mmol) in ethanol (10 ml) was added to an aqueous solution(10 mL) of NaN3(2 mmol) and the resulting mixed solution was stirred for one hour at room temperature and then filtered off. This filtrate was left to evaporate slowly. After one week, deep purple crystals suitable for X-ray analysis were isolated.

Refinement

All C—H atoms were positioned geometrically, with C—H = 0.93 or 0.96 Å and constrained to ride on their parent atoms with Uiso(H)=1.2U (carrier) or Uiso (H)=1.5U (methyl carrier).

Figures

Fig. 1.
ORTEP drawing of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level [symmetry codes relating the atoms with and without the suffix A: -x + 1, -y + 2, -z + 1]

Crystal data

[Ni(N3)2(C10H14N3O2S)2]F(000) = 648
Mr = 623.37Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5712 reflections
a = 9.9212 (7) Åθ = 2.7–29.3°
b = 12.1732 (8) ŵ = 0.95 mm1
c = 11.1795 (8) ÅT = 291 K
β = 102.695 (1)°Block, dark purple
V = 1317.17 (16) Å30.40 × 0.22 × 0.15 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer3005 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
graphiteRint = 0.010
[var phi] and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick , 1996)h = −12→9
Tmin = 0.703, Tmax = 0.874k = −14→15
7812 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.031P)2 + 0.5195P] where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50001.00000.50000.02603 (8)
S10.75033 (4)1.27825 (3)0.38125 (4)0.04133 (11)
O10.64775 (12)0.90740 (9)0.43831 (12)0.0486 (3)
O20.89398 (15)1.14747 (11)0.24875 (14)0.0611 (4)
N10.60808 (11)1.13921 (9)0.47330 (10)0.0272 (2)
N20.72751 (11)0.94577 (9)0.37164 (10)0.0285 (2)
N30.84655 (12)1.05745 (10)0.28101 (11)0.0360 (3)
N40.61887 (17)0.99070 (14)0.67735 (14)0.0568 (4)
N50.58855 (14)0.95757 (10)0.76655 (12)0.0380 (3)
N60.5618 (2)0.92594 (14)0.85593 (15)0.0652 (5)
C10.64979 (16)1.32436 (12)0.47626 (15)0.0391 (3)
H10.64231.39760.49760.047*
C20.58239 (15)1.24038 (11)0.51644 (13)0.0329 (3)
H2A0.52311.25060.56940.039*
C30.69761 (13)1.14629 (10)0.40176 (12)0.0269 (2)
C40.75220 (13)1.05162 (11)0.35158 (12)0.0273 (3)
C50.79699 (14)0.86855 (11)0.29890 (12)0.0312 (3)
C60.90436 (14)0.94677 (12)0.25934 (13)0.0337 (3)
C70.8572 (2)0.77211 (15)0.37997 (18)0.0535 (5)
H7A0.91440.79920.45480.080*
H7B0.91170.72750.33780.080*
H7C0.78340.72880.39840.080*
C80.68251 (19)0.82790 (16)0.19319 (16)0.0524 (4)
H8A0.61100.79370.22560.079*
H8B0.72010.77550.14520.079*
H8C0.64470.88900.14240.079*
C91.04886 (16)0.94066 (17)0.34192 (17)0.0527 (4)
H9A1.10500.99860.32070.079*
H9B1.08980.87090.33100.079*
H9C1.04270.94860.42600.079*
C100.9140 (2)0.93844 (17)0.12542 (15)0.0534 (4)
H10A0.82440.95060.07360.080*
H10B0.94630.86660.10990.080*
H10C0.97720.99290.10840.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02752 (13)0.02314 (12)0.03225 (13)−0.00064 (8)0.01700 (9)0.00075 (8)
S10.0393 (2)0.02794 (18)0.0629 (2)−0.00619 (14)0.02443 (18)0.00477 (16)
O10.0554 (7)0.0281 (5)0.0793 (8)0.0016 (5)0.0519 (6)0.0040 (5)
O20.0673 (8)0.0448 (7)0.0892 (10)−0.0049 (6)0.0564 (8)0.0112 (6)
N10.0276 (5)0.0250 (5)0.0319 (5)0.0002 (4)0.0125 (4)0.0003 (4)
N20.0263 (5)0.0278 (5)0.0360 (6)0.0008 (4)0.0166 (4)−0.0009 (4)
N30.0350 (6)0.0362 (6)0.0439 (6)−0.0003 (5)0.0238 (5)0.0031 (5)
N40.0533 (9)0.0743 (11)0.0408 (8)−0.0261 (8)0.0058 (7)0.0125 (7)
N50.0436 (7)0.0299 (6)0.0405 (7)−0.0034 (5)0.0091 (5)0.0021 (5)
N60.1006 (14)0.0528 (9)0.0498 (9)−0.0085 (9)0.0332 (9)0.0077 (7)
C10.0374 (7)0.0253 (6)0.0563 (9)−0.0016 (5)0.0136 (7)−0.0045 (6)
C20.0341 (7)0.0276 (6)0.0392 (7)0.0018 (5)0.0128 (6)−0.0042 (5)
C30.0244 (6)0.0252 (6)0.0326 (6)−0.0015 (5)0.0098 (5)0.0023 (5)
C40.0242 (6)0.0302 (6)0.0300 (6)−0.0003 (5)0.0114 (5)0.0021 (5)
C50.0307 (6)0.0327 (7)0.0337 (6)0.0056 (5)0.0145 (5)−0.0028 (5)
C60.0293 (7)0.0421 (8)0.0339 (7)0.0037 (6)0.0159 (5)−0.0027 (6)
C70.0550 (10)0.0485 (10)0.0647 (11)0.0239 (8)0.0300 (9)0.0160 (8)
C80.0515 (10)0.0551 (10)0.0507 (9)−0.0137 (8)0.0115 (8)−0.0167 (8)
C90.0299 (8)0.0678 (12)0.0603 (10)0.0029 (7)0.0095 (7)−0.0120 (9)
C100.0586 (11)0.0703 (12)0.0397 (8)0.0009 (9)0.0288 (8)−0.0049 (8)

Geometric parameters (Å, °)

Ni1—N12.0619 (11)C2—H2A0.9300
Ni1—N1i2.0619 (11)C3—C41.4387 (18)
Ni1—N4i2.0753 (15)C5—C71.523 (2)
Ni1—N42.0753 (15)C5—C81.530 (2)
Ni1—O12.0831 (10)C5—C61.563 (2)
Ni1—O1i2.0832 (10)C6—C101.5243 (19)
S1—C11.7040 (16)C6—C91.527 (2)
S1—C31.7204 (13)C7—H7A0.9600
O1—N21.2880 (14)C7—H7B0.9600
O2—N31.2756 (17)C7—H7C0.9600
N1—C31.3222 (16)C8—H8A0.9600
N1—C21.3669 (17)C8—H8B0.9600
N2—C41.3398 (18)C8—H8C0.9600
N2—C51.5055 (16)C9—H9A0.9600
N3—C41.3520 (16)C9—H9B0.9600
N3—C61.5047 (19)C9—H9C0.9600
N4—N51.1745 (19)C10—H10A0.9600
N5—N61.1547 (19)C10—H10B0.9600
C1—C21.351 (2)C10—H10C0.9600
C1—H10.9300
N1—Ni1—N1i180.00 (5)N2—C4—C3127.35 (11)
N1—Ni1—N4i91.22 (5)N3—C4—C3123.63 (12)
N1i—Ni1—N4i88.78 (5)N2—C5—C7109.04 (11)
N1—Ni1—N488.78 (5)N2—C5—C8105.60 (12)
N1i—Ni1—N491.22 (5)C7—C5—C8109.74 (15)
N4i—Ni1—N4180.0N2—C5—C6101.18 (10)
N1—Ni1—O188.32 (4)C7—C5—C6115.82 (12)
N1i—Ni1—O191.68 (4)C8—C5—C6114.50 (12)
N4i—Ni1—O190.39 (7)N3—C6—C10109.03 (13)
N4—Ni1—O189.61 (7)N3—C6—C9106.66 (13)
N1—Ni1—O1i91.68 (4)C10—C6—C9109.73 (13)
N1i—Ni1—O1i88.32 (4)N3—C6—C5101.08 (10)
N4i—Ni1—O1i89.61 (7)C10—C6—C5115.53 (13)
N4—Ni1—O1i90.38 (7)C9—C6—C5114.01 (13)
O1—Ni1—O1i180.0C5—C7—H7A109.5
C1—S1—C389.29 (7)C5—C7—H7B109.5
N2—O1—Ni1124.18 (8)H7A—C7—H7B109.5
C3—N1—C2110.91 (11)C5—C7—H7C109.5
C3—N1—Ni1125.52 (9)H7A—C7—H7C109.5
C2—N1—Ni1123.11 (9)H7B—C7—H7C109.5
O1—N2—C4127.15 (11)C5—C8—H8A109.5
O1—N2—C5119.91 (11)C5—C8—H8B109.5
C4—N2—C5112.82 (10)H8A—C8—H8B109.5
O2—N3—C4123.76 (12)C5—C8—H8C109.5
O2—N3—C6123.12 (11)H8A—C8—H8C109.5
C4—N3—C6112.60 (11)H8B—C8—H8C109.5
N5—N4—Ni1129.20 (13)C6—C9—H9A109.5
N6—N5—N4178.30 (19)C6—C9—H9B109.5
C2—C1—S1110.99 (11)H9A—C9—H9B109.5
C2—C1—H1124.5C6—C9—H9C109.5
S1—C1—H1124.5H9A—C9—H9C109.5
C1—C2—N1114.84 (12)H9B—C9—H9C109.5
C1—C2—H2A122.6C6—C10—H10A109.5
N1—C2—H2A122.6C6—C10—H10B109.5
N1—C3—C4122.97 (11)H10A—C10—H10B109.5
N1—C3—S1113.94 (10)C6—C10—H10C109.5
C4—C3—S1122.99 (9)H10A—C10—H10C109.5
N2—C4—N3108.88 (11)H10B—C10—H10C109.5
N1—Ni1—O1—N2−21.29 (12)O1—N2—C4—N3177.25 (14)
N1i—Ni1—O1—N2158.71 (12)C5—N2—C4—N3−6.89 (15)
N4i—Ni1—O1—N269.92 (13)O1—N2—C4—C31.4 (2)
N4—Ni1—O1—N2−110.08 (13)C5—N2—C4—C3177.22 (13)
O1i—Ni1—O1—N2−114 (16)O2—N3—C4—N2−178.14 (14)
N1i—Ni1—N1—C3177 (16)C6—N3—C4—N2−6.19 (16)
N4i—Ni1—N1—C3−70.05 (12)O2—N3—C4—C3−2.1 (2)
N4—Ni1—N1—C3109.95 (12)C6—N3—C4—C3169.88 (12)
O1—Ni1—N1—C320.30 (11)N1—C3—C4—N2−2.8 (2)
O1i—Ni1—N1—C3−159.70 (11)S1—C3—C4—N2173.34 (11)
N1i—Ni1—N1—C2−11 (16)N1—C3—C4—N3−178.16 (13)
N4i—Ni1—N1—C2101.39 (12)S1—C3—C4—N3−1.98 (19)
N4—Ni1—N1—C2−78.61 (12)O1—N2—C5—C7−45.32 (18)
O1—Ni1—N1—C2−168.26 (11)C4—N2—C5—C7138.49 (14)
O1i—Ni1—N1—C211.74 (11)O1—N2—C5—C872.54 (16)
Ni1—O1—N2—C415.2 (2)C4—N2—C5—C8−103.65 (14)
Ni1—O1—N2—C5−160.42 (9)O1—N2—C5—C6−167.85 (12)
N1—Ni1—N4—N5148.00 (19)C4—N2—C5—C615.96 (14)
N1i—Ni1—N4—N5−32.00 (19)O2—N3—C6—C10−50.34 (19)
N4i—Ni1—N4—N521 (16)C4—N3—C6—C10137.65 (14)
O1—Ni1—N4—N5−123.68 (18)O2—N3—C6—C968.08 (18)
O1i—Ni1—N4—N556.32 (18)C4—N3—C6—C9−103.93 (14)
Ni1—N4—N5—N6−172 (100)O2—N3—C6—C5−172.49 (14)
C3—S1—C1—C2−0.63 (12)C4—N3—C6—C515.50 (15)
S1—C1—C2—N1−0.18 (17)N2—C5—C6—N3−17.26 (12)
C3—N1—C2—C11.19 (18)C7—C5—C6—N3−134.97 (13)
Ni1—N1—C2—C1−171.36 (10)C8—C5—C6—N395.77 (14)
C2—N1—C3—C4174.82 (12)N2—C5—C6—C10−134.76 (13)
Ni1—N1—C3—C4−12.85 (18)C7—C5—C6—C10107.53 (16)
C2—N1—C3—S1−1.67 (15)C8—C5—C6—C10−21.73 (19)
Ni1—N1—C3—S1170.66 (6)N2—C5—C6—C996.76 (13)
C1—S1—C3—N11.34 (11)C7—C5—C6—C9−20.95 (18)
C1—S1—C3—C4−175.14 (12)C8—C5—C6—C9−150.21 (14)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5040).

References

  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Winsonsin, USA.
  • Chang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, m181. [PMC free article] [PubMed]
  • Fegy, K., Luneau, D., Ohm, T., Paulsen, C. & Rey, P. (1998). Angew. Chem. Int. Ed.37, 1270–1273.
  • Fursova, E. Y., Ovcharenko, V. I., Romanenko, G. V. & Tretyakov, E. V. (2003). Tetrahedron Lett.44, 6397–6399.
  • Kahn, M. L., Sutter, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc.122, 3413–3421.
  • Omata, J., Ishida, T., Hashizume, D., Iwasaki, F. & Nogami, T. (2001). Inorg. Chem.40, 3954–3958. [PubMed]
  • Schatzschneider, U., Weyhermüller, T. & Rentschler, E. (2001). Eur. J. Inorg. Chem. pp. 2569–2586.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sroh, C., Belorizky, E., Turek, P., Bolvin, H. & Ziessel, R. (2003). Inorg. Chem.42, 2938–2949. [PubMed]
  • Ullman, E. F., Call, L. & Osieckei, J. H. (1970). J. Org. Chem.35, 3623–3628.
  • Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc.94, 7049–7059.
  • Vostrikova, K. E., Luneau, D., Wersdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc.122, 718–719.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566–1572.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography