PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1468.
Published online 2010 October 30. doi:  10.1107/S1600536810042637
PMCID: PMC3009135

(2-Carb­oxy­acetato-κ2 O 1,O 1′)(rac-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N,N′,N′′,N′′′)nickel(II) perchlorate acetonitrile solvate

Abstract

In the crystal structure of the title salt, [Ni(C3H3O4)(C16H36N4)]ClO4·CH3CN, the macrocycle folds around the NiII atom, which is also chelated by the carboxyl­ate monoanion. The geometry is a distorted NiN4O2 octa­hedron. The formula units are connected by N—H(...)O hydrogen bonds into centrosymmetric dimers. Further N—H(...)O and O—H(...)O hydrogen bonds link the complex mol­ecules and the perchlorate ions.

Related literature

For three related structures, see: Jiang et al. (2005 [triangle]); Ou, Zhang & Yuan (2009 [triangle]); Ou, Zhou & Ng (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1468-scheme1.jpg

Experimental

Crystal data

  • [Ni(C3H3O4)(C16H36N4)]ClO4·C2H3N
  • M r = 586.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1468-efi1.jpg
  • a = 9.5236 (4) Å
  • b = 10.1766 (4) Å
  • c = 15.3372 (6) Å
  • α = 92.899 (1)°
  • β = 107.388 (1)°
  • γ = 106.516 (1)°
  • V = 1344.99 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.87 mm−1
  • T = 173 K
  • 0.45 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.695, T max = 0.845
  • 11181 measured reflections
  • 5701 independent reflections
  • 4946 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.090
  • S = 1.03
  • 5701 reflections
  • 330 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042637/bt5383sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042637/bt5383Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Key Subject Construction Project of Hunan Province (2006–180), the Scientific Research Fund of Hunan Provincial Education Department (10B039), the Scientific Research Fund of Hunan Provincial Education Department (10 C0730) and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

We have reported adducts of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane with nickel carboxylates; in the synthesis, the perchlorate counterion reactant is sometimes incorporated into the crystal structure, so that the macrocycle-chelated entity is formally a mono-cation. When a dicarboxylic acid is used, only one carboxylic acid –CO2H end is deprotonated, as noted in the butenoate (Jiang et al., 2005), phthalate (Ou, Zhang & Yuan, 2009) and malate (Ou, Zhou & Ng, 2009) salts. In Ni(C16H36N4)(C3H3O4)+.ClO4-.CH3CN (Scheme I), the macrocycle folds around the nickel(II) atom, which is also chelated by the carboxylate monoanion. The geometry is an NiN4O2 octahedron (Fig. 1). Adjacent cations and anions are linked by N–H···O hydrogen bonds to form a centrosymmetric dimer (Table 1). The acetonitrile molecule does not engage in any interaction.

Experimental

Malonic acid (0.208 g, 2 mmol) and sodium hydroxide (0.08 g, 2 mmol) were dissolved in water (10 ml). To the solution was added [Ni(rac-L)](ClO4)2 (0.108 g, 2 mmol) dissolved in acetonitrile (10 ml) (rac-L = 5,5,7,12,12,14-hexamethyl-1,4,8,11tetraazacyclotetradecane). The solution was left to stand at room temperature; blue crystals formed after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

The amino H-atoms were similarly restrained [N–H 0.88 Å] with Uiso(H) set to 1.2–1.5Ueq(N).

The carboxylic acid H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of [Ni(C16H36N4)(C3H3O4)]+.ClO4-.CH3CN at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.

Crystal data

[Ni(C3H3O4)(C16H36N4)]ClO4·C2H3NZ = 2
Mr = 586.76F(000) = 624
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5236 (4) ÅCell parameters from 7463 reflections
b = 10.1766 (4) Åθ = 2.3–27.0°
c = 15.3372 (6) ŵ = 0.87 mm1
α = 92.899 (1)°T = 173 K
β = 107.388 (1)°Block, blue
γ = 106.516 (1)°0.45 × 0.40 × 0.20 mm
V = 1344.99 (9) Å3

Data collection

Bruker SMART APEX diffractometer5701 independent reflections
Radiation source: fine-focus sealed tube4946 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.695, Tmax = 0.845k = −12→12
11181 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0459P)2 + 0.9446P] where P = (Fo2 + 2Fc2)/3
5701 reflections(Δ/σ)max = 0.001
330 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = −0.54 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.44427 (3)0.26403 (2)0.226567 (15)0.01746 (8)
Cl10.11013 (6)0.48419 (5)0.33697 (4)0.02939 (12)
O10.53455 (15)0.20193 (14)0.11561 (9)0.0226 (3)
O20.63737 (15)0.19233 (14)0.26257 (9)0.0232 (3)
O30.60045 (17)−0.08012 (15)0.05987 (10)0.0296 (3)
H3O0.565 (3)−0.119 (3)0.0053 (9)0.048 (8)*
O40.75796 (18)0.07704 (17)0.00664 (10)0.0366 (4)
O50.0676 (2)0.4372 (3)0.24039 (14)0.0642 (6)
O6−0.0232 (2)0.4920 (2)0.35800 (12)0.0452 (4)
O70.1767 (2)0.3921 (2)0.39064 (17)0.0605 (6)
O90.2239 (2)0.6171 (2)0.35917 (14)0.0593 (5)
N10.26807 (18)0.07075 (16)0.17735 (11)0.0211 (3)
H10.28500.03490.12950.025*
N20.27765 (18)0.34713 (17)0.15032 (11)0.0225 (3)
H20.23730.37730.18880.027*
N30.60664 (18)0.46469 (16)0.27909 (11)0.0211 (3)
H30.69840.45270.29540.025*
N40.41760 (19)0.26668 (16)0.35641 (11)0.0212 (3)
H40.33440.29030.35330.025*
N50.9236 (3)0.0264 (3)0.37545 (18)0.0560 (6)
C10.1245 (2)0.1067 (2)0.13879 (15)0.0292 (4)
H1A0.08760.13120.18940.035*
H1B0.04270.02600.09670.035*
C20.1553 (2)0.2276 (2)0.08669 (14)0.0282 (4)
H2A0.18900.20230.03490.034*
H2B0.05930.25230.06090.034*
C30.3327 (2)0.4644 (2)0.10165 (13)0.0255 (4)
H3A0.38130.43230.05880.031*
C40.1996 (3)0.5125 (3)0.04463 (16)0.0371 (5)
H4A0.12100.43420.00020.056*
H4B0.23960.58610.01130.056*
H4C0.15320.54800.08580.056*
C50.4547 (2)0.5866 (2)0.17060 (14)0.0276 (4)
H5A0.46770.66840.13800.033*
H5B0.41180.60600.21940.033*
C60.6159 (2)0.5764 (2)0.21848 (13)0.0249 (4)
C70.6890 (2)0.5397 (2)0.14827 (14)0.0291 (4)
H7A0.62480.44920.11170.044*
H7B0.79310.53620.18090.044*
H7C0.69590.61040.10720.044*
C80.7192 (3)0.7183 (2)0.27434 (16)0.0346 (5)
H8A0.82350.71390.30570.052*
H8B0.67520.74350.32040.052*
H8C0.72510.78800.23270.052*
C90.5823 (2)0.5038 (2)0.36648 (13)0.0269 (4)
H9A0.49170.53810.35310.032*
H9B0.67450.57910.40630.032*
C100.5551 (2)0.3792 (2)0.41571 (13)0.0268 (4)
H10A0.64720.34700.43080.032*
H10B0.53890.40490.47420.032*
C110.4025 (2)0.1328 (2)0.39390 (13)0.0256 (4)
H110.49510.10430.39490.031*
C120.3970 (3)0.1463 (2)0.49289 (15)0.0367 (5)
H12A0.48980.21910.53250.055*
H12B0.39330.05800.51640.055*
H12C0.30440.17030.49300.055*
C130.2577 (2)0.0191 (2)0.33284 (14)0.0287 (4)
H13A0.2388−0.05890.36840.034*
H13B0.16920.05570.32270.034*
C140.2539 (2)−0.0404 (2)0.23828 (14)0.0260 (4)
C150.3865 (3)−0.0994 (2)0.24651 (15)0.0309 (5)
H15A0.4856−0.02540.27390.046*
H15B0.3793−0.13850.18500.046*
H15C0.3801−0.17220.28590.046*
C160.1011 (3)−0.1599 (2)0.19501 (17)0.0394 (5)
H16A0.0967−0.19940.13430.059*
H16B0.0134−0.12460.18800.059*
H16C0.0961−0.23180.23520.059*
C170.6356 (2)0.17427 (19)0.18083 (13)0.0213 (4)
C180.7602 (2)0.1236 (2)0.16206 (14)0.0287 (4)
H18A0.85140.20450.16790.034*
H18B0.79300.06600.20940.034*
C190.7075 (2)0.0401 (2)0.06769 (14)0.0249 (4)
C200.9213 (3)0.1114 (3)0.42492 (17)0.0367 (5)
C210.9193 (3)0.2199 (3)0.48808 (19)0.0461 (6)
H21A0.99080.22220.54970.069*
H21B0.81430.20200.49090.069*
H21C0.95170.30920.46660.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01746 (13)0.02064 (13)0.01497 (12)0.00797 (9)0.00478 (9)0.00037 (8)
Cl10.0266 (2)0.0302 (3)0.0345 (3)0.0106 (2)0.0132 (2)0.0033 (2)
O10.0187 (6)0.0258 (7)0.0217 (7)0.0075 (5)0.0045 (5)−0.0003 (5)
O20.0232 (7)0.0264 (7)0.0210 (7)0.0109 (6)0.0063 (5)−0.0014 (5)
O30.0314 (8)0.0322 (8)0.0216 (7)0.0082 (6)0.0062 (6)−0.0020 (6)
O40.0302 (8)0.0473 (10)0.0276 (8)0.0037 (7)0.0127 (7)−0.0075 (7)
O50.0548 (12)0.0906 (16)0.0429 (11)0.0162 (11)0.0208 (9)−0.0196 (11)
O60.0388 (9)0.0625 (12)0.0471 (10)0.0282 (9)0.0211 (8)0.0056 (9)
O70.0582 (12)0.0579 (12)0.0934 (17)0.0388 (11)0.0410 (12)0.0382 (12)
O90.0513 (12)0.0460 (11)0.0582 (13)−0.0053 (9)0.0046 (10)0.0128 (9)
N10.0205 (8)0.0244 (8)0.0190 (8)0.0070 (6)0.0080 (6)0.0001 (6)
N20.0221 (8)0.0279 (8)0.0188 (8)0.0119 (7)0.0050 (6)0.0020 (6)
N30.0211 (8)0.0238 (8)0.0187 (8)0.0086 (6)0.0058 (6)0.0014 (6)
N40.0241 (8)0.0230 (8)0.0185 (8)0.0105 (6)0.0072 (6)0.0023 (6)
N50.0522 (14)0.0499 (14)0.0606 (16)0.0148 (11)0.0148 (12)−0.0084 (12)
C10.0182 (9)0.0338 (11)0.0307 (11)0.0060 (8)0.0035 (8)0.0011 (8)
C20.0202 (9)0.0354 (11)0.0242 (10)0.0103 (8)−0.0006 (8)0.0013 (8)
C30.0288 (10)0.0318 (11)0.0214 (9)0.0168 (9)0.0089 (8)0.0067 (8)
C40.0373 (12)0.0470 (14)0.0342 (12)0.0252 (11)0.0091 (10)0.0163 (10)
C50.0356 (11)0.0248 (10)0.0271 (10)0.0153 (9)0.0109 (9)0.0069 (8)
C60.0284 (10)0.0222 (9)0.0225 (10)0.0062 (8)0.0077 (8)0.0034 (7)
C70.0290 (11)0.0325 (11)0.0272 (10)0.0082 (9)0.0126 (9)0.0056 (8)
C80.0382 (12)0.0247 (11)0.0345 (12)0.0025 (9)0.0100 (10)0.0014 (9)
C90.0343 (11)0.0245 (10)0.0195 (9)0.0086 (8)0.0067 (8)−0.0026 (7)
C100.0331 (11)0.0273 (10)0.0168 (9)0.0088 (8)0.0050 (8)−0.0014 (7)
C110.0316 (11)0.0273 (10)0.0200 (9)0.0117 (8)0.0089 (8)0.0048 (8)
C120.0539 (15)0.0362 (12)0.0211 (10)0.0121 (11)0.0156 (10)0.0071 (9)
C130.0329 (11)0.0284 (10)0.0270 (10)0.0061 (9)0.0163 (9)0.0054 (8)
C140.0302 (11)0.0230 (10)0.0253 (10)0.0064 (8)0.0117 (8)0.0030 (8)
C150.0423 (12)0.0248 (10)0.0320 (11)0.0157 (9)0.0163 (10)0.0050 (8)
C160.0404 (13)0.0302 (12)0.0393 (13)−0.0012 (10)0.0132 (10)0.0019 (9)
C170.0181 (9)0.0201 (9)0.0240 (9)0.0043 (7)0.0071 (7)−0.0030 (7)
C180.0190 (9)0.0415 (12)0.0236 (10)0.0121 (9)0.0037 (8)−0.0086 (8)
C190.0179 (9)0.0330 (11)0.0243 (10)0.0129 (8)0.0044 (8)−0.0040 (8)
C200.0310 (12)0.0379 (13)0.0383 (13)0.0099 (10)0.0080 (10)0.0062 (10)
C210.0508 (15)0.0462 (15)0.0453 (15)0.0162 (12)0.0213 (12)0.0014 (11)

Geometric parameters (Å, °)

Ni1—N42.0813 (16)C5—H5A0.9900
Ni1—N22.0868 (16)C5—H5B0.9900
Ni1—O22.1014 (13)C6—C71.529 (3)
Ni1—N12.1144 (16)C6—C81.533 (3)
Ni1—N32.1223 (16)C7—H7A0.9800
Ni1—O12.2603 (13)C7—H7B0.9800
Ni1—C172.5082 (18)C7—H7C0.9800
Cl1—O61.4222 (16)C8—H8A0.9800
Cl1—O91.4213 (19)C8—H8B0.9800
Cl1—O51.4306 (19)C8—H8C0.9800
Cl1—O71.4359 (19)C9—C101.507 (3)
O1—C171.270 (2)C9—H9A0.9900
O2—C171.252 (2)C9—H9B0.9900
O3—C191.324 (3)C10—H10A0.9900
O3—H3o0.83 (1)C10—H10B0.9900
O4—C191.204 (3)C11—C131.526 (3)
N1—C11.475 (2)C11—C121.535 (3)
N1—C141.505 (2)C11—H111.0000
N1—H10.8800C12—H12A0.9800
N2—C21.478 (3)C12—H12B0.9800
N2—C31.491 (3)C12—H12C0.9800
N2—H20.8800C13—C141.529 (3)
N3—C91.481 (2)C13—H13A0.9900
N3—C61.504 (2)C13—H13B0.9900
N3—H30.8800C14—C151.521 (3)
N4—C101.478 (2)C14—C161.540 (3)
N4—C111.491 (2)C15—H15A0.9800
N4—H40.8800C15—H15B0.9800
N5—C201.131 (3)C15—H15C0.9800
C1—C21.508 (3)C16—H16A0.9800
C1—H1A0.9900C16—H16B0.9800
C1—H1B0.9900C16—H16C0.9800
C2—H2A0.9900C17—C181.515 (3)
C2—H2B0.9900C18—C191.506 (3)
C3—C41.531 (3)C18—H18A0.9900
C3—C51.525 (3)C18—H18B0.9900
C3—H3A1.0000C20—C211.439 (3)
C4—H4A0.9800C21—H21A0.9800
C4—H4B0.9800C21—H21B0.9800
C4—H4C0.9800C21—H21C0.9800
C5—C61.527 (3)
N4—Ni1—N2104.09 (6)C5—C6—C7111.33 (16)
N4—Ni1—O295.69 (6)N3—C6—C8111.54 (16)
N2—Ni1—O2159.77 (6)C5—C6—C8108.18 (17)
N4—Ni1—N191.55 (6)C7—C6—C8108.01 (17)
N2—Ni1—N185.19 (6)C6—C7—H7A109.5
O2—Ni1—N198.65 (6)C6—C7—H7B109.5
N4—Ni1—N385.63 (6)H7A—C7—H7B109.5
N2—Ni1—N391.43 (6)C6—C7—H7C109.5
O2—Ni1—N385.80 (6)H7A—C7—H7C109.5
N1—Ni1—N3174.96 (6)H7B—C7—H7C109.5
N4—Ni1—O1154.65 (6)C6—C8—H8A109.5
N2—Ni1—O1100.65 (6)C6—C8—H8B109.5
O2—Ni1—O160.22 (5)H8A—C8—H8B109.5
N1—Ni1—O185.06 (5)C6—C8—H8C109.5
N3—Ni1—O199.27 (5)H8A—C8—H8C109.5
N4—Ni1—C17125.20 (6)H8B—C8—H8C109.5
N2—Ni1—C17130.70 (6)N3—C9—C10109.34 (16)
O2—Ni1—C1729.89 (6)N3—C9—H9A109.8
N1—Ni1—C1792.09 (6)C10—C9—H9A109.8
N3—Ni1—C1792.95 (6)N3—C9—H9B109.8
O1—Ni1—C1730.33 (6)C10—C9—H9B109.8
O6—Cl1—O9110.07 (13)H9A—C9—H9B108.3
O6—Cl1—O5109.36 (12)N4—C10—C9109.92 (16)
O9—Cl1—O5108.85 (13)N4—C10—H10A109.7
O6—Cl1—O7110.15 (12)C9—C10—H10A109.7
O9—Cl1—O7107.90 (13)N4—C10—H10B109.7
O5—Cl1—O7110.50 (14)C9—C10—H10B109.7
C17—O1—Ni185.69 (11)H10A—C10—H10B108.2
C17—O2—Ni193.34 (11)N4—C11—C13111.13 (16)
C19—O3—H3O110 (2)N4—C11—C12111.90 (16)
C1—N1—C14113.93 (15)C13—C11—C12109.05 (17)
C1—N1—Ni1104.51 (12)N4—C11—H11108.2
C14—N1—Ni1120.56 (12)C13—C11—H11108.2
C1—N1—H1105.6C12—C11—H11108.2
C14—N1—H1105.6C11—C12—H12A109.5
Ni1—N1—H1105.6C11—C12—H12B109.5
C2—N2—C3112.71 (15)H12A—C12—H12B109.5
C2—N2—Ni1104.89 (12)C11—C12—H12C109.5
C3—N2—Ni1116.63 (12)H12A—C12—H12C109.5
C2—N2—H2107.4H12B—C12—H12C109.5
C3—N2—H2107.4C14—C13—C11119.18 (17)
Ni1—N2—H2107.4C14—C13—H13A107.5
C9—N3—C6114.03 (15)C11—C13—H13A107.5
C9—N3—Ni1104.30 (11)C14—C13—H13B107.5
C6—N3—Ni1120.41 (12)C11—C13—H13B107.5
C9—N3—H3105.7H13A—C13—H13B107.0
C6—N3—H3105.7N1—C14—C15107.74 (16)
Ni1—N3—H3105.7N1—C14—C13110.42 (16)
C10—N4—C11112.07 (15)C15—C14—C13111.55 (17)
C10—N4—Ni1104.22 (12)N1—C14—C16111.13 (17)
C11—N4—Ni1115.03 (11)C15—C14—C16107.64 (18)
C10—N4—H4108.4C13—C14—C16108.34 (17)
C11—N4—H4108.4C14—C15—H15A109.5
Ni1—N4—H4108.4C14—C15—H15B109.5
N1—C1—C2109.58 (16)H15A—C15—H15B109.5
N1—C1—H1A109.8C14—C15—H15C109.5
C2—C1—H1A109.8H15A—C15—H15C109.5
N1—C1—H1B109.8H15B—C15—H15C109.5
C2—C1—H1B109.8C14—C16—H16A109.5
H1A—C1—H1B108.2C14—C16—H16B109.5
N2—C2—C1109.16 (16)H16A—C16—H16B109.5
N2—C2—H2A109.8C14—C16—H16C109.5
C1—C2—H2A109.8H16A—C16—H16C109.5
N2—C2—H2B109.8H16B—C16—H16C109.5
C1—C2—H2B109.8O2—C17—O1120.74 (17)
H2A—C2—H2B108.3O2—C17—C18118.42 (17)
N2—C3—C4112.02 (17)O1—C17—C18120.80 (17)
N2—C3—C5110.60 (16)O2—C17—Ni156.76 (9)
C4—C3—C5109.25 (17)O1—C17—Ni163.98 (10)
N2—C3—H3A108.3C18—C17—Ni1174.93 (14)
C4—C3—H3A108.3C19—C18—C17113.04 (16)
C5—C3—H3A108.3C19—C18—H18A109.0
C3—C4—H4A109.5C17—C18—H18A109.0
C3—C4—H4B109.5C19—C18—H18B109.0
H4A—C4—H4B109.5C17—C18—H18B109.0
C3—C4—H4C109.5H18A—C18—H18B107.8
H4A—C4—H4C109.5O4—C19—O3123.73 (18)
H4B—C4—H4C109.5O4—C19—C18124.16 (19)
C6—C5—C3119.38 (16)O3—C19—C18112.10 (18)
C6—C5—H5A107.5N5—C20—C21179.6 (3)
C3—C5—H5A107.5C20—C21—H21A109.5
C6—C5—H5B107.5C20—C21—H21B109.5
C3—C5—H5B107.5H21A—C21—H21B109.5
H5A—C5—H5B107.0C20—C21—H21C109.5
N3—C6—C5110.32 (16)H21A—C21—H21C109.5
N3—C6—C7107.46 (16)H21B—C21—H21C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3o···O1i0.83 (1)1.84 (1)2.669 (2)173 (3)
N1—H1···O4i0.882.193.038 (2)161
N2—H2···O50.882.213.052 (2)160
N3—H3···O6ii0.882.443.291 (2)163
N4—H4···O70.882.243.080 (2)161

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5383).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2003). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jiang, L., Feng, X.-L. & Lu, T.-B. (2005). Cryst. Growth Des.5, 1469–1475.
  • Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2009). Acta Cryst. E65, m726. [PMC free article] [PubMed]
  • Ou, G.-C., Zhou, Q. & Ng, S. W. (2009). Acta Cryst. E65, m728. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography