PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1478.
Published online 2010 October 30. doi:  10.1107/S1600536810042558
PMCID: PMC3009130

Poly[hexa-μ-acetato-bis­(dimethyl sulfoxide)­trimanganese(II)]

Abstract

In the title complex, [Mn3(CH3CO2)6(C2H6SO)2]n, the MnII ions exhibit similar MnO6 octa­hedral coordination geometries but with different coordination environments. One type of MnII ion is surrounded by five acetate groups and a terminal dimethyl sulfoxide group, while the other lies on a twofold axis and is coordinated by six O atoms from three symmetry-related acetate ions. The acetate anions exhibit three independent bridging modes, which flexibly bridge the MnII ions along the c-axis direction, forming an infinite chain structure; the chains are further inter­connected through weak C—H(...)O and C—H(...)S hydrogen-bonding inter­actions.

Related literature

For metal complexes of DMSO, see: Calligaris et al. (2004 [triangle]). For the structure of a related complex, see: Wang et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1478-scheme1.jpg

Experimental

Crystal data

  • [Mn3(C2H3O2)6(C2H6OS)2]
  • M r = 675.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1478-efi1.jpg
  • a = 12.8475 (16) Å
  • b = 12.5439 (16) Å
  • c = 8.6095 (11) Å
  • β = 94.906 (2)°
  • V = 1382.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.56 mm−1
  • T = 293 K
  • 0.41 × 0.36 × 0.29 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.883, T max = 1.000
  • 3821 measured reflections
  • 1953 independent reflections
  • 1919 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.056
  • S = 1.05
  • 1953 reflections
  • 161 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 653 Friedel pairs
  • Flack parameter: 0.034 (17)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042558/pv2332sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042558/pv2332Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR20100718).

supplementary crystallographic information

Comment

The coordination chemistry of dimethyl sulfoxid (DMSO) has been widely studied. Herein, we report the preparation and crystal strcuture of a new manganese(II) complex with dimethyl sulfoxide (DMSO). In the title complex, the two independent MnII ions (Mn1 and Mn2) exhibit a similar O6-octahedral coordination geometry with different coordination environments (Fig. 1). The Mn1 ion is surrounded by five acetates and one η1-bonding DMSO, while the Mn2 lies on a two-fold axis and is coordinated by six oxygen atoms of three symmetry related acetate ions. The acetate anions exhibit three independent bridging modes, syn, synη112-mode (C2-symmetric O3-containing acetate and O5-, O6-containing acetate), the syn, syn, antη123-mode (O1-, O2-containing acetate) and the syn, ant, syn, antη223-mode (C2-symmetric O7-containing acetate). The Mn1 and Mn2 ions are flexibly bridged by these anions and assemble into an infinite chain along the c direction (Fig. 2). The parallel arrays interconnect through C—H···O and C—H···S type H-bonding interactions (Table 1). In the termianl dimethyl sulfoxide, the S1═O4 of 1.501 (2)Å bond is slightly longer than that of the neat DMSO, which can be ascribed to the reduced bond order as that found in the protonated and η1-coordinated alkyl sulfoxides (Calligaris et al., 2004). The Mn1—O4 bond length of 2.153 (2)Å is comparable to 2.158 (2)Å found in catena-(tetrakis(µ2-thiocyanato-N,S)-bis(dimethyl sulfoxide-O)- manganese(II)-mercury(II) (Wang et al., 2000), in which the dimethyl sulfoxide shows a similar terminal η1-coordinated bonding to the MnII.

Experimental

Mn(CH3CO2)2.4H2O (25 mg, 0.1 mmol) was dissolved in 3 ml deionized water with stirring at room temperature. After half an hour, 1 ml dimethyl sulfoxide was added to the solution. The mixed solution was stirred for another half hour, and then filtered. The clear solution obtained was left to stand in the air to let the solvent to evaporate. The colorless crystals were deposited after one week (12.60 mg, yield 56%).

Refinement

An absolute structure was determined using the Flack (1983) method. The hydrogen atoms were placed in idealized positions and allowed to ride on the parent carbon atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
A view of the title complex with the atom-numbering scheme; hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at 30% probability level. Symmetry codes: i x, y, z-1; ii -x+2,y,-z; iii -x + 2, y, -z +1.
Fig. 2.
Infinite chain of the MnII ions bridged by acetate anions along the c direction in a unit cell. Symmetry code: i -x + 2, y, -z.

Crystal data

[Mn3(C2H3O2)6(C2H6OS)2]Z = 2
Mr = 675.34F(000) = 690
Monoclinic, C2Dx = 1.622 Mg m3
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 12.8475 (16) Åθ = 2.4–25.1°
b = 12.5439 (16) ŵ = 1.56 mm1
c = 8.6095 (11) ÅT = 293 K
β = 94.906 (2)°Block, colorless
V = 1382.4 (3) Å30.41 × 0.36 × 0.29 mm

Data collection

Bruker SMART CCD area-detector diffractometer1953 independent reflections
Radiation source: fine-focus sealed tube1919 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −15→15
Tmin = 0.883, Tmax = 1.000k = −12→14
3821 measured reflectionsl = −10→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.056w = 1/[σ2(Fo2) + (0.033P)2 + 0.3155P] P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1953 reflectionsΔρmax = 0.39 e Å3
161 parametersΔρmin = −0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 653 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.034 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An absolute structure was established with the Flack parameter of 0.034 (17).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.91731 (2)0.56819 (3)0.13931 (4)0.02995 (11)
Mn21.00000.43103 (4)0.50000.03045 (14)
S10.70961 (5)0.67013 (7)0.27681 (10)0.0504 (2)
O10.91650 (12)0.53278 (16)0.88461 (19)0.0352 (4)
O20.87911 (14)0.44946 (19)0.6590 (2)0.0447 (5)
O30.94917 (16)0.73193 (16)0.0982 (2)0.0446 (5)
O40.75455 (15)0.6046 (2)0.1528 (2)0.0526 (6)
O50.87347 (19)0.4057 (2)0.1696 (3)0.0641 (6)
O60.89783 (16)0.3166 (2)0.3901 (2)0.0517 (5)
O71.05675 (14)0.59438 (15)0.60213 (19)0.0379 (4)
C10.85462 (19)0.4827 (2)0.7865 (3)0.0318 (5)
C20.7442 (2)0.4630 (3)0.8279 (4)0.0454 (7)
H2A0.73550.49280.92870.068*
H2B0.73120.38770.82990.068*
H2C0.69580.49610.75150.068*
C31.00000.7770 (3)0.00000.0376 (8)
C41.00000.8965 (4)0.00000.0634 (14)
H4A1.04250.9220−0.07860.095*0.50
H4B1.02770.92200.10030.095*0.50
H4C0.92980.9220−0.02170.095*0.50
C50.7587 (3)0.2664 (4)0.2103 (5)0.0792 (13)
H5A0.72910.28980.10990.119*
H5B0.70690.27120.28410.119*
H5C0.78140.19370.20330.119*
C60.8501 (2)0.3355 (2)0.2627 (3)0.0386 (6)
C70.6698 (3)0.5766 (5)0.4144 (5)0.0873 (14)
H7A0.73030.54830.47360.131*
H7B0.63200.51970.36070.131*
H7C0.62570.61130.48340.131*
C80.5846 (3)0.7060 (4)0.1907 (5)0.0799 (13)
H8A0.59180.75980.11300.120*
H8B0.54320.73330.26940.120*
H8C0.55110.64440.14290.120*
C91.00000.7628 (4)0.50000.0727 (16)
H9A0.95310.78830.41540.109*0.50
H9B1.06930.78830.48780.109*0.50
H9C0.97760.78830.59690.109*0.50
C101.00000.6450 (4)0.50000.0383 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.02796 (17)0.0394 (2)0.02291 (18)0.00325 (16)0.00453 (12)0.00263 (16)
Mn20.0318 (3)0.0360 (3)0.0238 (3)0.0000.00371 (19)0.000
S10.0378 (4)0.0585 (5)0.0547 (5)0.0060 (3)0.0025 (3)−0.0202 (4)
O10.0278 (8)0.0502 (11)0.0278 (9)−0.0062 (8)0.0037 (7)−0.0038 (8)
O20.0401 (9)0.0648 (14)0.0305 (9)−0.0086 (9)0.0107 (8)−0.0127 (9)
O30.0549 (11)0.0398 (11)0.0407 (11)0.0029 (9)0.0141 (9)0.0029 (8)
O40.0341 (10)0.0810 (17)0.0428 (11)0.0108 (9)0.0043 (8)−0.0150 (11)
O50.0691 (15)0.0525 (15)0.0704 (16)−0.0129 (12)0.0037 (12)0.0102 (12)
O60.0554 (11)0.0611 (14)0.0382 (11)−0.0123 (10)0.0010 (9)−0.0110 (10)
O70.0454 (9)0.0452 (12)0.0229 (8)−0.0039 (8)0.0019 (7)0.0009 (8)
C10.0285 (12)0.0419 (14)0.0248 (12)−0.0027 (10)0.0020 (10)0.0013 (11)
C20.0345 (13)0.065 (2)0.0369 (15)−0.0113 (13)0.0062 (11)−0.0079 (13)
C30.0337 (17)0.039 (2)0.040 (2)0.000−0.0017 (15)0.000
C40.061 (3)0.041 (2)0.092 (4)0.0000.031 (3)0.000
C50.078 (2)0.087 (3)0.068 (2)−0.039 (2)−0.020 (2)0.009 (2)
C60.0384 (13)0.0347 (14)0.0433 (15)−0.0019 (11)0.0079 (11)−0.0041 (12)
C70.076 (2)0.134 (4)0.054 (2)−0.005 (3)0.0194 (18)0.000 (3)
C80.0454 (17)0.081 (3)0.110 (3)0.0282 (19)−0.0133 (19)−0.029 (3)
C90.120 (5)0.046 (3)0.051 (3)0.0000.000 (3)0.000
C100.047 (2)0.043 (2)0.0272 (19)0.0000.0116 (17)0.000

Geometric parameters (Å, °)

Mn1—O32.130 (2)C1—C21.513 (4)
Mn1—O52.136 (2)C2—H2A0.9600
Mn1—O42.1533 (19)C2—H2B0.9600
Mn1—O1i2.2076 (15)C2—H2C0.9600
Mn1—O1ii2.2365 (17)C3—O3iv1.247 (3)
Mn1—O7i2.2467 (17)C3—C41.498 (6)
Mn2—O62.113 (2)C4—H4A0.9600
Mn2—O6i2.113 (2)C4—H4B0.9600
Mn2—O22.1690 (18)C4—H4C0.9600
Mn2—O2i2.1690 (18)C5—C61.499 (5)
Mn2—O72.3224 (19)C5—H5A0.9600
Mn2—O7i2.3224 (19)C5—H5B0.9600
S1—O41.501 (2)C5—H5C0.9600
S1—C81.768 (3)C7—H7A0.9600
S1—C71.773 (5)C7—H7B0.9600
O1—C11.275 (3)C7—H7C0.9600
O1—Mn1i2.2076 (15)C8—H8A0.9600
O1—Mn1iii2.2365 (17)C8—H8B0.9600
O2—C11.239 (3)C8—H8C0.9600
O3—C31.247 (3)C9—C101.477 (7)
O5—C61.245 (4)C9—H9A0.9600
O6—C61.233 (4)C9—H9B0.9600
O7—C101.264 (3)C9—H9C0.9600
O7—Mn1i2.2467 (17)C10—O7i1.264 (3)
O3—Mn1—O5175.34 (9)O1—C1—C2117.9 (2)
O3—Mn1—O490.32 (9)C1—C2—H2A109.5
O5—Mn1—O485.91 (10)C1—C2—H2B109.5
O3—Mn1—O1i88.70 (8)H2A—C2—H2B109.5
O5—Mn1—O1i94.97 (9)C1—C2—H2C109.5
O4—Mn1—O1i177.66 (7)H2A—C2—H2C109.5
O3—Mn1—O1ii90.78 (7)H2B—C2—H2C109.5
O5—Mn1—O1ii87.19 (9)O3iv—C3—O3126.1 (4)
O4—Mn1—O1ii99.89 (7)O3iv—C3—C4116.97 (19)
O1i—Mn1—O1ii78.00 (7)O3—C3—C4116.97 (19)
O3—Mn1—O7i90.53 (7)C3—C4—H4A109.5
O5—Mn1—O7i92.12 (9)C3—C4—H4B109.5
O4—Mn1—O7i88.74 (7)H4A—C4—H4B109.5
O1i—Mn1—O7i93.39 (6)C3—C4—H4C109.5
O1ii—Mn1—O7i171.26 (6)H4A—C4—H4C109.5
O6—Mn2—O6i94.44 (13)H4B—C4—H4C109.5
O6—Mn2—O284.50 (8)C6—C5—H5A109.5
O6i—Mn2—O2103.92 (8)C6—C5—H5B109.5
O6—Mn2—O2i103.92 (8)H5A—C5—H5B109.5
O6i—Mn2—O2i84.50 (8)C6—C5—H5C109.5
O2—Mn2—O2i167.76 (13)H5A—C5—H5C109.5
O6—Mn2—O7158.69 (8)H5B—C5—H5C109.5
O6i—Mn2—O7105.48 (8)O6—C6—O5125.5 (3)
O2—Mn2—O783.42 (7)O6—C6—C5118.3 (3)
O2i—Mn2—O785.78 (8)O5—C6—C5116.2 (3)
O6—Mn2—O7i105.48 (8)S1—C7—H7A109.5
O6i—Mn2—O7i158.69 (8)S1—C7—H7B109.5
O2—Mn2—O7i85.78 (8)H7A—C7—H7B109.5
O2i—Mn2—O7i83.42 (7)S1—C7—H7C109.5
O7—Mn2—O7i56.16 (9)H7A—C7—H7C109.5
O4—S1—C8103.40 (16)H7B—C7—H7C109.5
O4—S1—C7105.3 (2)S1—C8—H8A109.5
C8—S1—C798.3 (2)S1—C8—H8B109.5
C1—O1—Mn1i126.19 (15)H8A—C8—H8B109.5
C1—O1—Mn1iii134.27 (15)S1—C8—H8C109.5
Mn1i—O1—Mn1iii97.36 (6)H8A—C8—H8C109.5
C1—O2—Mn2147.63 (17)H8B—C8—H8C109.5
C3—O3—Mn1132.0 (2)C10—C9—H9A109.5
S1—O4—Mn1126.07 (12)C10—C9—H9B109.5
C6—O5—Mn1146.5 (2)H9A—C9—H9B109.5
C6—O6—Mn2120.7 (2)C10—C9—H9C109.5
C10—O7—Mn1i142.22 (15)H9A—C9—H9C109.5
C10—O7—Mn292.1 (2)H9B—C9—H9C109.5
Mn1i—O7—Mn2105.15 (7)O7i—C10—O7119.7 (4)
O2—C1—O1124.1 (2)O7i—C10—C9120.16 (19)
O2—C1—C2117.9 (2)O7—C10—C9120.16 (19)
O6—Mn2—O2—C1163.4 (4)O6—Mn2—O7—C10−33.4 (2)
O6i—Mn2—O2—C170.2 (4)O6i—Mn2—O7—C10168.01 (9)
O2i—Mn2—O2—C1−62.4 (4)O2—Mn2—O7—C10−89.32 (10)
O7—Mn2—O2—C1−34.2 (4)O2i—Mn2—O7—C1084.91 (9)
O7i—Mn2—O2—C1−90.5 (4)O7i—Mn2—O7—C100.0
O5—Mn1—O3—C3−96.9 (11)O6—Mn2—O7—Mn1i112.59 (19)
O4—Mn1—O3—C3−132.66 (18)O6i—Mn2—O7—Mn1i−45.97 (9)
O1i—Mn1—O3—C345.22 (18)O2—Mn2—O7—Mn1i56.70 (8)
O1ii—Mn1—O3—C3−32.76 (18)O2i—Mn2—O7—Mn1i−129.08 (8)
O7i—Mn1—O3—C3138.60 (19)O7i—Mn2—O7—Mn1i146.02 (13)
C8—S1—O4—Mn1161.6 (2)Mn2—O2—C1—O12.3 (6)
C7—S1—O4—Mn1−95.7 (2)Mn2—O2—C1—C2−177.9 (3)
O3—Mn1—O4—S1−66.55 (18)Mn1i—O1—C1—O2−2.6 (4)
O5—Mn1—O4—S1116.18 (19)Mn1iii—O1—C1—O2−161.7 (2)
O1i—Mn1—O4—S1−132 (2)Mn1i—O1—C1—C2177.7 (2)
O1ii—Mn1—O4—S1−157.39 (17)Mn1iii—O1—C1—C218.5 (4)
O7i—Mn1—O4—S123.97 (18)Mn1—O3—C3—O3iv−3.74 (11)
O3—Mn1—O5—C6−114.0 (11)Mn1—O3—C3—C4176.26 (11)
O4—Mn1—O5—C6−78.1 (4)Mn2—O6—C6—O518.9 (4)
O1i—Mn1—O5—C6104.1 (4)Mn2—O6—C6—C5−163.8 (3)
O1ii—Mn1—O5—C6−178.2 (4)Mn1—O5—C6—O6−46.7 (6)
O7i—Mn1—O5—C610.5 (4)Mn1—O5—C6—C5135.9 (4)
O6i—Mn2—O6—C6−148.6 (2)Mn1i—O7—C10—O7i−118.3 (3)
O2—Mn2—O6—C6107.8 (2)Mn2—O7—C10—O7i0.0
O2i—Mn2—O6—C6−63.2 (2)Mn1i—O7—C10—C961.7 (3)
O7—Mn2—O6—C652.1 (3)Mn2—O7—C10—C9180.0
O7i—Mn2—O6—C623.7 (2)

Symmetry codes: (i) −x+2, y, −z+1; (ii) x, y, z−1; (iii) x, y, z+1; (iv) −x+2, y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8B···O6v0.962.453.367 (4)160
C2—H2B···S1vi0.962.993.841 (4)147

Symmetry codes: (v) x−1/2, y+1/2, z; (vi) −x+3/2, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2332).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calligaris, M. (2004). Coord. Chem. Rev.248, 351–375.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2000). Acta Cryst. C56, 418–420. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography