PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1426.
Published online 2010 October 23. doi:  10.1107/S1600536810041474
PMCID: PMC3009127

Tetra­aqua(2,2′-bipyridine-κ2 N,N′)magnesium(II) bis­(4-bromo­benzoate)

Abstract

In the complex cation of the title compound, [Mg(C10H8N2)(H2O)4](C7H4BrO2)2, the MgII atom is coordinated by two N atoms from a 2,2′-bipyridine ligand and four water O atoms in a distorted MgN2O4 octa­hedral geometry. The cation is located on a special position on a twofold rotation axis which passes through the MgII atom and the centroid of the 2,2′-bipyridine ligand. The 2,2′-bipyridine ligands exhibit nearly perfect coplanarity (r.m.s. deviation = 0.0035 Å) . In the crystal, O—H(...)O and C—H(...)O, C—H(...)Br hydrogen bonds and π–π stacking inter­actions [mean inter­planar distance of 3.475 (6) Å between adjacent 2,2′-bipyridine ligands] link the cations and anions into a three-dimensional supra­molecular network. One Br atom is disordered over two sites with occupancy factors of 0.55 and 0.45.

Related literature

For related magnesium(II) complexes with 1.10-phenanthroline and pyridine ligands, see: Halut-Desportes (1981 [triangle]); Hao et al. (2008 [triangle]); Zhang (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1426-scheme1.jpg

Experimental

Crystal data

  • [Mg(C10H8N2)(H2O)4](C7H4BrO2)2
  • M r = 652.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1426-efi2.jpg
  • a = 30.275 (6) Å
  • b = 12.308 (3) Å
  • c = 7.5785 (15) Å
  • β = 103.90 (3)°
  • V = 2741.2 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.03 mm−1
  • T = 290 K
  • 0.31 × 0.27 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.406, T max = 0.562
  • 10517 measured reflections
  • 2412 independent reflections
  • 1505 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.174
  • S = 1.08
  • 2412 reflections
  • 171 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.88 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810041474/rk2240sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041474/rk2240Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316) and the Scientific Research Fund of Ningbo University (grant No. XKL09078).

supplementary crystallographic information

Comment

Magnesium(II) ions with 1.10-phenanthroline (phen) and pyridine (py) ligands can form tetraaqua(L)nMagnesium(II) (L = phen, n = 1; L = py, n = 2) complex cation ( Halut-Desportes, 1981; Hao et al., 2008; Zhang, 2004). In this paper we report synthesis and structure of the title compound. The crystal structure of title compound consists of [Mg(H2O)4(2,2'-bipy)]2+ complex cations and 4-bromobenzoate anion (Fig. 1). The cation placed in special position on twofold axis, which passes through MgII atom and middle C5—C5i bond of 2,2'-bipy molecule. Symmetry code: (i) -x, y, -z+1/2. In the cation, the MgII atom is coordinated by two N atoms from one 2,2'-bipy ligands, four O atoms from four different water molecules, completing a distorted MgN2O4 octahedral geometry. The Mg—N bond length is 2.199 (4)Å and Mg—O bond lengths are 2.035 (3)Å and 2.042Å. The chelating bipy ligands exhibit nearly perfect coplanarity (r.m.s. deviations = 0.0035Å ). The mean interplanar distances of 3.475 (6)Å between adjacent bipy ligands indicate π···π stacking interactions (Fig. 2). The complex cations and 4-bromobenzoate anins are connected viaπ···π stacking interactions and O—H···O and C—H···O, C—H···Br hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

Experimental

MgCl2.6H2O (0.11 g, 0.54 mmol) was dissolved in appropriate amount of water, and then 1M Na2CO3 solution was added. MgCO3 was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared MgCO3, 4-bromobenzoic acid (0.0508 g, 0.24 mmol), 2,2'-bipyridine (bipy) (0.0394 g, 0.22 mmol ), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2.0 h. Subsequently, the resulting cream suspension was heated in a 23 ml teflon-lined stainless steel autoclave at 433 K for 5800 minutes. After the autoclave was cooled to room temperature according to the procedure at 2600 minutes. the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 4 months afforded colourless block single crystals.

Refinement

C-bound H atoms were placed in calculated positions, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C), and were refined using the riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an O—H distance restraint of 0.82 (1)Å and Uiso(H) = 1.5Ueq(O). The Br1 atom during anisotropic refinement procedure became prolate and was splitted on two positions with occupancy factors of 0.55 and 0.45.

Figures

Fig. 1.
The molecule structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Symetry code: (i) -x, y, -z+1/2. H atoms are presented as a small spheres of arbitrary radius. Only major position ...
Fig. 2.
A packing diagram of the title complex, viewed down the c axis. The O—H···O, C—H···O and C—H···Br hydrogen bonds are drawn by dashed lines.

Crystal data

[Mg(C10H8N2)(H2O)4](C7H4BrO2)2F(000) = 1312
Mr = 652.56Dx = 1.581 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6277 reflections
a = 30.275 (6) Åθ = 3.2–25.0°
b = 12.308 (3) ŵ = 3.03 mm1
c = 7.5785 (15) ÅT = 290 K
β = 103.90 (3)°Block, colourless
V = 2741.2 (11) Å30.31 × 0.27 × 0.19 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer2412 independent reflections
Radiation source: fine-focus sealed tube1505 reflections with I > 2σ(I)
graphiteRint = 0.063
ω–scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −35→35
Tmin = 0.406, Tmax = 0.562k = −14→14
10517 measured reflectionsl = −9→7

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0695P)2 + 6.5977P] where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.88 e Å3
1 restraintΔρmin = −0.49 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mg10.00000.29391 (14)0.25000.0366 (5)
Br10.2137 (3)0.9201 (5)0.0828 (12)0.1255 (19)0.55
Br1'0.2127 (4)0.8733 (7)0.0939 (16)0.1255 (19)0.45
N10.04459 (13)0.1518 (3)0.2599 (5)0.0410 (9)
O10.05190 (12)0.4001 (2)0.2564 (4)0.0521 (9)
H1A0.05610.45610.31660.078*
H1B0.05120.40610.14800.078*
O2−0.01205 (11)0.2973 (2)−0.0269 (4)0.0494 (8)
H2A−0.03760.3009−0.09440.074*
H2B0.00360.3273−0.08680.074*
O30.43473 (11)0.9050 (2)0.5752 (4)0.0480 (8)
O40.40497 (12)0.7957 (3)0.7472 (5)0.0646 (10)
C10.08821 (17)0.1562 (4)0.2545 (6)0.0514 (12)
H10.10240.22370.26490.062*
C20.11341 (18)0.0657 (4)0.2343 (7)0.0543 (12)
H20.14380.07170.23020.065*
C30.09216 (19)−0.0333 (4)0.2203 (7)0.0591 (13)
H30.1081−0.09590.20600.071*
C40.04759 (18)−0.0403 (4)0.2274 (6)0.0510 (12)
H40.0332−0.10740.21980.061*
C50.02400 (15)0.0542 (3)0.2461 (5)0.0393 (10)
C60.35589 (17)0.8637 (4)0.4824 (6)0.0466 (11)
C70.32382 (19)0.7824 (4)0.4683 (7)0.0623 (14)
H70.33050.72090.54110.075*
C80.2819 (2)0.7917 (6)0.3469 (9)0.0837 (19)
H80.26090.73530.33310.100*
C90.2716 (2)0.8849 (7)0.2471 (8)0.089 (2)
C100.3022 (2)0.9671 (7)0.2613 (8)0.089 (2)
H100.29461.03010.19320.106*
C110.34477 (19)0.9563 (5)0.3780 (7)0.0640 (14)
H110.36611.01170.38630.077*
C120.40163 (16)0.8535 (3)0.6125 (6)0.0423 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mg10.0387 (12)0.0345 (10)0.0359 (10)0.0000.0074 (9)0.000
Br10.0583 (7)0.219 (6)0.0842 (12)0.038 (3)−0.0128 (6)0.011 (3)
Br1'0.0583 (7)0.219 (6)0.0842 (12)0.038 (3)−0.0128 (6)0.011 (3)
N10.043 (2)0.0397 (19)0.0380 (19)0.0001 (17)0.0041 (16)0.0003 (15)
O10.064 (2)0.0470 (17)0.0468 (18)−0.0141 (15)0.0161 (17)−0.0094 (14)
O20.047 (2)0.0625 (19)0.0367 (16)−0.0069 (16)0.0061 (14)0.0051 (14)
O30.045 (2)0.0515 (17)0.0492 (18)−0.0063 (15)0.0136 (15)−0.0062 (14)
O40.052 (2)0.078 (2)0.056 (2)−0.0141 (19)−0.0018 (17)0.0225 (18)
C10.042 (3)0.054 (3)0.057 (3)−0.004 (2)0.008 (2)0.000 (2)
C20.040 (3)0.062 (3)0.060 (3)0.015 (2)0.012 (2)0.003 (2)
C30.060 (4)0.054 (3)0.059 (3)0.016 (3)0.007 (3)−0.002 (2)
C40.053 (3)0.042 (2)0.055 (3)0.004 (2)0.008 (2)−0.001 (2)
C50.042 (3)0.041 (2)0.033 (2)0.0058 (19)0.0037 (19)0.0007 (18)
C60.041 (3)0.059 (3)0.040 (2)0.006 (2)0.011 (2)0.002 (2)
C70.049 (3)0.073 (3)0.063 (3)−0.010 (3)0.011 (3)−0.002 (3)
C80.050 (4)0.122 (5)0.076 (4)−0.020 (4)0.008 (3)−0.023 (4)
C90.046 (4)0.164 (7)0.054 (3)0.023 (4)0.009 (3)0.008 (4)
C100.063 (4)0.140 (6)0.067 (4)0.035 (4)0.023 (3)0.039 (4)
C110.052 (3)0.081 (4)0.062 (3)0.009 (3)0.019 (3)0.022 (3)
C120.040 (3)0.042 (2)0.046 (3)−0.004 (2)0.013 (2)−0.009 (2)

Geometric parameters (Å, °)

Mg1—O12.035 (3)C2—C31.371 (7)
Mg1—O1i2.035 (3)C2—H20.9300
Mg1—O22.042 (3)C3—C41.366 (7)
Mg1—O2i2.042 (3)C3—H30.9300
Mg1—N1i2.199 (4)C4—C51.390 (6)
Mg1—N12.199 (4)C4—H40.9300
Mg1—H1B2.3424C5—C5i1.468 (9)
Br1—C91.939 (10)C6—C71.380 (7)
Br1'—C91.885 (11)C6—C111.382 (7)
N1—C11.332 (6)C6—C121.500 (7)
N1—C51.346 (5)C7—C81.382 (8)
O1—H1A0.8200C7—H70.9300
O1—H1B0.8200C8—C91.367 (9)
O2—H2A0.8199C8—H80.9300
O2—H2B0.8201C9—C101.358 (10)
O3—C121.274 (5)C10—C111.384 (8)
O4—C121.228 (5)C10—H100.9300
C1—C21.379 (7)C11—H110.9300
C1—H10.9300
O1—Mg1—O1i100.12 (19)C1—C2—H2121.1
O1—Mg1—O287.58 (13)C4—C3—C2120.2 (5)
O1i—Mg1—O290.94 (13)C4—C3—H3119.9
O1—Mg1—O2i90.94 (13)C2—C3—H3119.9
O1i—Mg1—O2i87.58 (13)C3—C4—C5119.2 (4)
O2—Mg1—O2i177.69 (19)C3—C4—H4120.4
O1—Mg1—N1i167.24 (14)C5—C4—H4120.4
O1i—Mg1—N1i92.61 (13)N1—C5—C4121.0 (4)
O2—Mg1—N1i91.39 (13)N1—C5—C5i116.2 (2)
O2i—Mg1—N1i90.45 (13)C4—C5—C5i122.8 (3)
O1—Mg1—N192.61 (13)C7—C6—C11118.9 (5)
O1i—Mg1—N1167.24 (14)C7—C6—C12120.8 (4)
O2—Mg1—N190.45 (13)C11—C6—C12120.3 (4)
O2i—Mg1—N191.39 (13)C6—C7—C8120.5 (5)
N1i—Mg1—N174.7 (2)C6—C7—H7119.7
O1—Mg1—H1B20.1C8—C7—H7119.7
O1i—Mg1—H1B100.5C9—C8—C7119.3 (6)
O2—Mg1—H1B67.5C9—C8—H8120.4
O2i—Mg1—H1B111.0C7—C8—H8120.4
N1i—Mg1—H1B155.1C10—C9—C8121.4 (6)
N1—Mg1—H1B91.7C10—C9—Br1'129.1 (6)
C1—N1—C5118.5 (4)C8—C9—Br1'109.5 (6)
C1—N1—Mg1124.9 (3)C10—C9—Br1112.2 (6)
C5—N1—Mg1116.0 (3)C8—C9—Br1126.4 (7)
Mg1—O1—H1A124.7Br1'—C9—Br117.5 (4)
Mg1—O1—H1B101.6C9—C10—C11119.4 (6)
H1A—O1—H1B116.4C9—C10—H10120.3
Mg1—O2—H2A123.4C11—C10—H10120.3
Mg1—O2—H2B126.4C6—C11—C10120.4 (6)
H2A—O2—H2B102.4C6—C11—H11119.8
N1—C1—C2123.4 (5)C10—C11—H11119.8
N1—C1—H1118.3O4—C12—O3124.1 (4)
C2—C1—H1118.3O4—C12—C6118.3 (4)
C3—C2—C1117.7 (5)O3—C12—C6117.6 (4)
C3—C2—H2121.1

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.821.892.702 (4)172
O1—H1B···O3iii0.821.842.640 (4)165
O2—H2A···O4iv0.821.862.679 (7)175
O2—H2B···O3iii0.822.082.790 (5)145
C2—H2···Br1v0.933.003.525 (7)117
C2—H2···Br1'v0.933.113.612 (7)116
C3—H3···O4vi0.932.533.239 (6)133

Symmetry codes: (ii) −x+1/2, −y+3/2, −z+1; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, y−1/2, z−1; (v) x, −y+1, z+1/2; (vi) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2240).

References

  • Halut-Desportes, S. (1981). Rev. Chim. Miner.18, 199.
  • Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052. [PMC free article] [PubMed]
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MS, The Woodlands Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, B.-S. (2004). Chin. J. Struct. Chem.23, 1411–1415.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography