PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3001.
Published online 2010 October 31. doi:  10.1107/S1600536810043813
PMCID: PMC3009125

2-(4-Eth­oxy­carbon­yl-5-methyl-1H-1,2,3-triazol-1-yl)acetic acid mono­hydrate

Abstract

The title compound, C8H11N3O4·H2O, was synthesized by reaction of 2-azido­acetic acid and ethyl acetyl­acetate. In the crystal packing, mol­ecules are linked by strong inter­molecular O—H(...)N and O—H(...)O hydrogen bonds into double layers parallel to the ab plane.

Related literature

For the biological activities of triazole derivatives, see: Olesen et al. (2003 [triangle]); Tian et al. (2005 [triangle]). For the synthesis, see: El Khadem et al. (1968 [triangle]). For related structures, see: Lin et al. (2008 [triangle]); Xiao et al. (2008 [triangle]); Zhao (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3001-scheme1.jpg

Experimental

Crystal data

  • C8H11N3O4·H2O
  • M r = 231.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3001-efi1.jpg
  • a = 18.6082 (15) Å
  • b = 8.2295 (15) Å
  • c = 14.986 (2) Å
  • β = 92.050 (5)°
  • V = 2293.4 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 295 K
  • 0.35 × 0.32 × 0.28 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.960, T max = 0.970
  • 10958 measured reflections
  • 2490 independent reflections
  • 1536 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.189
  • S = 1.09
  • 2490 reflections
  • 148 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043813/rz2507sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043813/rz2507Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by financial support from Southeast University for young researchers (grant No. 4007041027).

supplementary crystallographic information

Comment

Triazole derivatives have attracted considerable attention due to their biological activities (Olesen et al., 2003; Tian et al., 2005). Recently, we have reported the crystal structures of a few triazole compounds (Lin et al., 2008; Xiao et al., 2008; Zhao, 2009). As an extension of our work on the structural characterization of triazole derivatives, the crystal structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The crystal packing is stabilized by strong intermolecular O—H···N and O—H···O hydrogen bonds involving the triazole and water molecules (Fig. 2; Table 1) forming double layers parallel to the ab plane.

Experimental

The title compound was prepared from 2-azidoacetic acid according to the reported method (El Khadem et al., 1968). Colourless prismatic crystal suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution.

Refinement

The water H atoms were located from a difference Fourier map but not refined [Uiso(H) = 1.5Ueq(O)]. All other H atoms were fixed geometrically and treated as riding with C—H = 0.96–0.97 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and carboxy H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound, showing the structure along the c axis.

Crystal data

C8H11N3O4·H2OF(000) = 976
Mr = 231.21Dx = 1.339 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2099 reflections
a = 18.6082 (15) Åθ = 2.7–27.5°
b = 8.2295 (15) ŵ = 0.11 mm1
c = 14.986 (2) ÅT = 295 K
β = 92.050 (5)°Prism, colourless
V = 2293.4 (6) Å30.35 × 0.32 × 0.28 mm
Z = 8

Data collection

Rigaku SCXmini diffractometer2490 independent reflections
Radiation source: fine-focus sealed tube1536 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 13.6612 pixels mm-1θmax = 27.0°, θmin = 2.7°
CCD_Profile_fitting scansh = −23→23
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −10→10
Tmin = 0.960, Tmax = 0.970l = −19→19
10958 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0861P)2 + 0.6922P] where P = (Fo2 + 2Fc2)/3
2490 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.81442 (14)−0.2524 (3)0.37722 (19)0.0552 (6)
C20.87508 (14)−0.2098 (3)0.44180 (18)0.0611 (7)
H2A0.8554−0.18350.49910.073*
H2B0.9059−0.30410.45020.073*
C30.90266 (14)0.0868 (3)0.41202 (18)0.0557 (6)
C40.83230 (16)0.1554 (4)0.4359 (3)0.0936 (12)
H4A0.79810.14020.38710.140*
H4B0.83760.26940.44810.140*
H4C0.81560.10120.48800.140*
C50.96537 (13)0.1568 (3)0.38496 (18)0.0542 (6)
C60.98182 (15)0.3313 (3)0.3765 (2)0.0631 (7)
N10.91816 (11)−0.0742 (2)0.41279 (14)0.0552 (6)
N20.98618 (12)−0.1025 (3)0.38793 (17)0.0658 (6)
N31.01479 (11)0.0386 (2)0.37055 (17)0.0629 (6)
O10.77303 (11)−0.3646 (2)0.41090 (13)0.0687 (6)
H10.7401−0.38610.37500.103*
O20.80534 (12)−0.1933 (3)0.30435 (15)0.0828 (7)
O30.93857 (12)0.4367 (2)0.38956 (19)0.0963 (8)
O41.04841 (10)0.3565 (2)0.35401 (16)0.0787 (7)
O1W0.66222 (12)0.5429 (3)0.31857 (17)0.1016 (9)
H1E0.61570.53280.33660.152*
H1F0.67240.46730.27510.152*
C71.07274 (18)0.5254 (4)0.3491 (3)0.0975 (13)
H7A1.05590.57330.29310.117*
H7B1.05310.58770.39750.117*
C81.1478 (2)0.5300 (5)0.3554 (4)0.1357 (19)
H8A1.16450.46800.40630.204*
H8B1.16350.64060.36200.204*
H8C1.16690.48460.30220.204*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0569 (15)0.0444 (13)0.0649 (16)−0.0084 (11)0.0111 (12)−0.0044 (12)
C20.0590 (16)0.0525 (15)0.0720 (17)−0.0113 (12)0.0030 (13)0.0027 (13)
C30.0483 (14)0.0482 (14)0.0705 (16)−0.0026 (11)0.0034 (12)−0.0085 (12)
C40.0614 (19)0.068 (2)0.154 (3)−0.0031 (16)0.031 (2)−0.017 (2)
C50.0462 (14)0.0448 (13)0.0713 (16)−0.0019 (11)−0.0012 (12)−0.0070 (12)
C60.0556 (16)0.0482 (14)0.085 (2)−0.0050 (13)−0.0067 (14)−0.0044 (13)
N10.0482 (12)0.0445 (11)0.0729 (14)−0.0073 (9)0.0042 (10)−0.0021 (10)
N20.0493 (13)0.0470 (12)0.1013 (18)−0.0040 (10)0.0066 (12)0.0008 (12)
N30.0462 (12)0.0470 (12)0.0956 (17)−0.0039 (9)0.0059 (11)−0.0033 (11)
O10.0652 (12)0.0675 (12)0.0739 (12)−0.0251 (10)0.0078 (9)−0.0006 (10)
O20.0906 (16)0.0848 (15)0.0724 (13)−0.0321 (12)−0.0074 (11)0.0157 (12)
O30.0744 (15)0.0479 (11)0.167 (2)0.0032 (11)0.0108 (15)−0.0080 (13)
O40.0532 (11)0.0499 (11)0.1330 (19)−0.0134 (9)0.0037 (11)0.0032 (11)
O1W0.0557 (13)0.122 (2)0.128 (2)−0.0154 (12)0.0168 (13)−0.0639 (16)
C70.075 (2)0.0488 (17)0.168 (4)−0.0179 (15)−0.011 (2)0.014 (2)
C80.095 (3)0.094 (3)0.216 (5)−0.049 (2)−0.031 (3)0.050 (3)

Geometric parameters (Å, °)

C1—O21.202 (3)C6—O31.204 (3)
C1—O11.315 (3)C6—O41.312 (3)
C1—C21.502 (4)N1—N21.352 (3)
C2—N11.450 (3)N2—N31.307 (3)
C2—H2A0.9700O1—H10.8200
C2—H2B0.9700O4—C71.465 (3)
C3—N11.356 (3)O1W—H1E0.9194
C3—C51.375 (3)O1W—H1F0.9251
C3—C41.481 (4)C7—C81.396 (5)
C4—H4A0.9600C7—H7A0.9700
C4—H4B0.9600C7—H7B0.9700
C4—H4C0.9600C8—H8A0.9600
C5—N31.361 (3)C8—H8B0.9600
C5—C61.475 (3)C8—H8C0.9600
O2—C1—O1124.6 (3)O3—C6—C5123.0 (3)
O2—C1—C2124.7 (2)O4—C6—C5112.1 (2)
O1—C1—C2110.7 (2)N2—N1—C3111.5 (2)
N1—C2—C1113.4 (2)N2—N1—C2118.9 (2)
N1—C2—H2A108.9C3—N1—C2129.4 (2)
C1—C2—H2A108.9N3—N2—N1107.1 (2)
N1—C2—H2B108.9N2—N3—C5108.7 (2)
C1—C2—H2B108.9C1—O1—H1109.5
H2A—C2—H2B107.7C6—O4—C7117.3 (2)
N1—C3—C5103.2 (2)H1E—O1W—H1F111.4
N1—C3—C4124.1 (2)C8—C7—O4109.4 (3)
C5—C3—C4132.7 (2)C8—C7—H7A109.8
C3—C4—H4A109.5O4—C7—H7A109.8
C3—C4—H4B109.5C8—C7—H7B109.8
H4A—C4—H4B109.5O4—C7—H7B109.8
C3—C4—H4C109.5H7A—C7—H7B108.2
H4A—C4—H4C109.5C7—C8—H8A109.5
H4B—C4—H4C109.5C7—C8—H8B109.5
N3—C5—C3109.4 (2)H8A—C8—H8B109.5
N3—C5—C6122.6 (2)C7—C8—H8C109.5
C3—C5—C6127.9 (2)H8A—C8—H8C109.5
O3—C6—O4124.8 (3)H8B—C8—H8C109.5
O2—C1—C2—N17.1 (4)C5—C3—N1—C2175.1 (3)
O1—C1—C2—N1−173.6 (2)C4—C3—N1—C2−5.1 (4)
N1—C3—C5—N30.2 (3)C1—C2—N1—N2−110.4 (3)
C4—C3—C5—N3−179.6 (3)C1—C2—N1—C374.9 (3)
N1—C3—C5—C6−176.4 (3)C3—N1—N2—N3−0.4 (3)
C4—C3—C5—C63.8 (5)C2—N1—N2—N3−176.0 (2)
N3—C5—C6—O3−179.6 (3)N1—N2—N3—C50.5 (3)
C3—C5—C6—O3−3.4 (5)C3—C5—N3—N2−0.4 (3)
N3—C5—C6—O4−0.1 (4)C6—C5—N3—N2176.4 (3)
C3—C5—C6—O4176.1 (3)O3—C6—O4—C73.4 (5)
C5—C3—N1—N20.1 (3)C5—C6—O4—C7−176.1 (3)
C4—C3—N1—N2179.9 (3)C6—O4—C7—C8159.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1F···O2i0.931.842.759 (3)176
O1W—H1E···N3ii0.921.962.879 (3)173
O1—H1···O1Wiii0.821.752.558 (3)167

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2507).

References

  • El Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329–1331.
  • Lin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843. [PMC free article] [PubMed]
  • Olesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem.46, 3333–3341. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem.99, 1646–1652. [PubMed]
  • Xiao, J., Wang, W. X. & Zhao, H. (2008). Acta Cryst. E64, o2085. [PMC free article] [PubMed]
  • Zhao, H. (2009). Acta Cryst. E65, o1258. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography