PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2715.
Published online 2010 October 2. doi:  10.1107/S1600536810038869
PMCID: PMC3009122

2-Methyl-N′-(4-nitro­benzyl­idene)benzohydrazide

Abstract

The title hydrazone compound, C15H13N3O3, was prepared by the condensation of 4-nitro­benzaldehyde with 2-methyl­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 14.8 (2)°. In the crystal, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains along the a axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010 [triangle]); Pyta et al. (2010 [triangle]); Angelusiu et al. (2010 [triangle]); Fun et al. (2008 [triangle]); Singh & Singh (2010 [triangle]); Ahmad et al. (2010 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For a similar hydrazone compound reported recently by the author, see: Tang (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2715-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O3
  • M r = 283.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2715-efi1.jpg
  • a = 7.416 (1) Å
  • b = 26.198 (3) Å
  • c = 7.860 (2) Å
  • β = 114.206 (1)°
  • V = 1392.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.981, T max = 0.983
  • 7336 measured reflections
  • 2941 independent reflections
  • 1696 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.140
  • S = 1.01
  • 2941 reflections
  • 194 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038869/rz2493sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038869/rz2493Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Jiaying University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Hydrazone compounds have received much attention in biological chemistry and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the title new hydrazone compound (Fig. 1).

In the title molecule, the dihedral angle between the two benzene rings is 14.8 (2)°. The torsion angles C4—C7—N2—N3, C7—N2—N3—C8 and N2—N3—C8—C9 are 3.9 (2), 13.8 (2), and 1.5 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987) and comparable with those of a similar hydrazone compound the author reported recently (Tang, 2010).

In the crystal structure of the compound, molecules are linked through N–H···O intermolecular hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Experimental

4-Nitrobenzaldehyde (0.1 mmol, 15.1 mg) and 3-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow block-shaped crystals of the title compound were formed by slow evaporation of the solvent over several days.

Refinement

Atom H3 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries, with C–H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Molecular packing of the title compound viewed along the c axis, with hydrogen bonds shown as dashed lines.

Crystal data

C15H13N3O3F(000) = 592
Mr = 283.28Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 996 reflections
a = 7.416 (1) Åθ = 2.7–24.5°
b = 26.198 (3) ŵ = 0.10 mm1
c = 7.860 (2) ÅT = 298 K
β = 114.206 (1)°Block, yellow
V = 1392.8 (4) Å30.20 × 0.18 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2941 independent reflections
Radiation source: fine-focus sealed tube1696 reflections with I > 2σ(I)
graphiteRint = 0.046
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→9
Tmin = 0.981, Tmax = 0.983k = −28→33
7336 measured reflectionsl = −10→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3174P] where P = (Fo2 + 2Fc2)/3
2941 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2497 (4)0.47404 (10)−0.4463 (3)0.0669 (7)
N20.2408 (3)0.28740 (7)0.0842 (2)0.0433 (5)
N30.2780 (3)0.25697 (8)0.2388 (3)0.0448 (5)
O10.2312 (4)0.45771 (9)−0.5969 (3)0.0985 (8)
O20.2575 (5)0.51917 (9)−0.4093 (3)0.1195 (10)
O30.0631 (2)0.19571 (6)0.0688 (2)0.0510 (5)
C10.2623 (3)0.43743 (9)−0.3004 (3)0.0456 (6)
C20.2438 (3)0.38615 (9)−0.3415 (3)0.0470 (6)
H20.22370.3747−0.45990.056*
C30.2557 (3)0.35214 (9)−0.2037 (3)0.0440 (6)
H3A0.24200.3174−0.23010.053*
C40.2877 (3)0.36894 (8)−0.0257 (3)0.0380 (5)
C50.3081 (4)0.42089 (9)0.0113 (3)0.0504 (6)
H50.33160.43260.13020.060*
C60.2938 (4)0.45538 (9)−0.1266 (3)0.0527 (7)
H60.30550.4902−0.10190.063*
C70.3044 (3)0.33305 (9)0.1220 (3)0.0431 (6)
H70.36250.34360.24580.052*
C80.1838 (3)0.21176 (9)0.2194 (3)0.0383 (5)
C90.2356 (3)0.18386 (9)0.3991 (3)0.0382 (5)
C100.2726 (3)0.13129 (9)0.4118 (3)0.0440 (6)
C110.3170 (4)0.10849 (11)0.5841 (4)0.0620 (8)
H110.34660.07380.59810.074*
C120.3184 (4)0.13555 (13)0.7343 (4)0.0689 (9)
H120.34600.11880.84660.083*
C130.2796 (4)0.18702 (12)0.7209 (3)0.0620 (8)
H130.28010.20520.82260.074*
C140.2399 (4)0.21091 (10)0.5539 (3)0.0489 (6)
H140.21550.24580.54370.059*
C150.2671 (4)0.09958 (10)0.2502 (4)0.0589 (7)
H15A0.13330.09700.15850.088*
H15B0.31720.06600.29350.088*
H15C0.34740.11540.19540.088*
H30.373 (3)0.2669 (10)0.349 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0865 (18)0.0589 (17)0.0603 (16)0.0004 (13)0.0353 (14)0.0137 (13)
N20.0457 (12)0.0447 (12)0.0331 (10)−0.0031 (9)0.0098 (9)0.0067 (9)
N30.0462 (13)0.0476 (12)0.0294 (10)−0.0062 (10)0.0041 (9)0.0065 (9)
O10.158 (2)0.0905 (17)0.0585 (14)−0.0072 (15)0.0554 (15)0.0135 (12)
O20.222 (3)0.0534 (15)0.1011 (19)0.0010 (17)0.084 (2)0.0192 (14)
O30.0561 (11)0.0503 (10)0.0322 (9)−0.0084 (8)0.0035 (8)−0.0006 (8)
C10.0468 (15)0.0457 (15)0.0461 (14)0.0031 (12)0.0209 (12)0.0088 (12)
C20.0510 (16)0.0525 (16)0.0385 (13)0.0020 (12)0.0193 (12)−0.0007 (12)
C30.0493 (15)0.0384 (13)0.0427 (14)0.0021 (11)0.0172 (12)−0.0015 (11)
C40.0350 (13)0.0400 (14)0.0365 (13)0.0002 (10)0.0121 (11)0.0020 (10)
C50.0614 (17)0.0467 (16)0.0421 (14)−0.0016 (12)0.0204 (13)−0.0029 (12)
C60.0657 (18)0.0376 (14)0.0555 (16)−0.0021 (12)0.0255 (14)−0.0009 (12)
C70.0437 (14)0.0463 (15)0.0343 (13)−0.0003 (11)0.0109 (11)0.0007 (11)
C80.0382 (13)0.0418 (14)0.0309 (12)0.0019 (11)0.0101 (11)−0.0012 (10)
C90.0310 (12)0.0467 (15)0.0322 (12)−0.0024 (10)0.0081 (10)0.0031 (10)
C100.0331 (13)0.0458 (15)0.0479 (14)−0.0018 (11)0.0113 (11)0.0043 (11)
C110.0518 (17)0.0580 (17)0.0681 (19)−0.0012 (14)0.0162 (15)0.0195 (15)
C120.0616 (19)0.090 (2)0.0449 (16)−0.0146 (17)0.0116 (14)0.0229 (16)
C130.0640 (19)0.085 (2)0.0356 (14)−0.0184 (16)0.0189 (13)−0.0034 (14)
C140.0499 (15)0.0561 (16)0.0381 (13)−0.0060 (12)0.0156 (12)−0.0016 (12)
C150.0514 (17)0.0499 (16)0.0742 (19)0.0054 (13)0.0246 (15)−0.0065 (14)

Geometric parameters (Å, °)

N1—O11.213 (3)C6—H60.9300
N1—O21.213 (3)C7—H70.9300
N1—C11.468 (3)C8—C91.494 (3)
N2—C71.275 (3)C9—C141.397 (3)
N2—N31.383 (2)C9—C101.400 (3)
N3—C81.351 (3)C10—C111.391 (3)
N3—H30.900 (10)C10—C151.504 (3)
O3—C81.229 (2)C11—C121.373 (4)
C1—C61.371 (3)C11—H110.9300
C1—C21.375 (3)C12—C131.374 (4)
C2—C31.377 (3)C12—H120.9300
C2—H20.9300C13—C141.373 (3)
C3—C41.391 (3)C13—H130.9300
C3—H3A0.9300C14—H140.9300
C4—C51.387 (3)C15—H15A0.9600
C4—C71.459 (3)C15—H15B0.9600
C5—C61.382 (3)C15—H15C0.9600
C5—H50.9300
O1—N1—O2123.6 (3)O3—C8—N3123.2 (2)
O1—N1—C1118.5 (3)O3—C8—C9123.1 (2)
O2—N1—C1117.9 (2)N3—C8—C9113.66 (19)
C7—N2—N3114.48 (19)C14—C9—C10120.2 (2)
C8—N3—N2119.86 (18)C14—C9—C8118.7 (2)
C8—N3—H3121.8 (18)C10—C9—C8121.0 (2)
N2—N3—H3118.2 (18)C11—C10—C9116.9 (2)
C6—C1—C2121.9 (2)C11—C10—C15119.9 (2)
C6—C1—N1119.0 (2)C9—C10—C15123.1 (2)
C2—C1—N1119.1 (2)C12—C11—C10122.1 (3)
C1—C2—C3118.6 (2)C12—C11—H11119.0
C1—C2—H2120.7C10—C11—H11119.0
C3—C2—H2120.7C11—C12—C13120.9 (3)
C2—C3—C4121.0 (2)C11—C12—H12119.5
C2—C3—H3A119.5C13—C12—H12119.5
C4—C3—H3A119.5C14—C13—C12118.5 (3)
C5—C4—C3118.7 (2)C14—C13—H13120.8
C5—C4—C7119.9 (2)C12—C13—H13120.8
C3—C4—C7121.3 (2)C13—C14—C9121.4 (2)
C6—C5—C4120.7 (2)C13—C14—H14119.3
C6—C5—H5119.7C9—C14—H14119.3
C4—C5—H5119.7C10—C15—H15A109.5
C1—C6—C5119.0 (2)C10—C15—H15B109.5
C1—C6—H6120.5H15A—C15—H15B109.5
C5—C6—H6120.5C10—C15—H15C109.5
N2—C7—C4121.1 (2)H15A—C15—H15C109.5
N2—C7—H7119.5H15B—C15—H15C109.5
C4—C7—H7119.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.90 (1)1.99 (1)2.870 (2)167 (3)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2493).

References

  • Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976. [PMC free article] [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem.45, 2055–2062. [PubMed]
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. [PMC free article] [PubMed]
  • Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct.970, 147–154.
  • Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem.45, 2307–2313. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. [PMC free article] [PubMed]
  • Tang, C.-B. (2010). Acta Cryst. E66, o2482. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography