PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2702.
Published online 2010 October 2. doi:  10.1107/S1600536810038419
PMCID: PMC3009119

3-(4-Chloro­phenyl­sulfin­yl)-2,4,6-trimethyl-1-benzofuran

Abstract

In the title mol­ecule, C17H15ClO2S, the 4-chloro­phenyl ring is oriented approximately perpendicular to the mean plane of the benzofuran ring [dihedral angle = 88.98 (4)°]. In the crystal, mol­ecules are linked through weak inter­molecular C—H(...)O and C—H(...)π inter­actions, forming right-hand pseudo-helices along the a axis.

Related literature

For the structures of related benzofuran derivatives, see: Choi et al. (2010a [triangle],b [triangle]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products containing benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2702-scheme1.jpg

Experimental

Crystal data

  • C17H15ClO2S
  • M r = 318.80
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2702-efi4.jpg
  • a = 12.1259 (10) Å
  • b = 19.3925 (16) Å
  • c = 6.4744 (5) Å
  • V = 1522.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 296 K
  • 0.44 × 0.28 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.848, T max = 0.937
  • 14409 measured reflections
  • 3468 independent reflections
  • 3134 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.089
  • S = 1.03
  • 3468 reflections
  • 194 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1561 Friedel pairs
  • Flack parameter: −0.03 (6)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038419/pv2330sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038419/pv2330Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Many compounds involving a benzofuran ring system exhibit important pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-chlorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring makes a dihedral angle of 88.98 (4)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the S═O unit (C13–H13···O2i; Table 1), and by an intermolecular C–H···π interaction between a methyl H atom and the 4-chlorophenyl ring (C11-H11C···Cgii; Table 1, Cg is the centroid of the C12–C17 4-chlorophenyl ring).

The title compound is crystallized in the non-centrosymmetric space group Pna21 in spite of having no asymmetric C atoms. The space group is caused by a right hand pseudo-helix along the a axis (Fig. 2).

Experimental

3-Chloroperoxybenzoic acid (77%, 291 mg, 1.3 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,4,6-trimethyl-1-benzofuran (363 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 452–453 K; Rf = 0.62 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as spheres of arbitrary radii.
Fig. 2.
A view of the C–H···O and C–H···π interactions (dotted lines) in the crystal structure of the title compound; Cg denotes the centroid of the C12-C17 ring. Hydrogen atoms not involved ...

Crystal data

C17H15ClO2SF(000) = 664
Mr = 318.80Dx = 1.391 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5206 reflections
a = 12.1259 (10) Åθ = 2.7–26.9°
b = 19.3925 (16) ŵ = 0.39 mm1
c = 6.4744 (5) ÅT = 296 K
V = 1522.5 (2) Å3Block, colourless
Z = 40.44 × 0.28 × 0.17 mm

Data collection

Bruker SMART APEXII CCD diffractometer3468 independent reflections
Radiation source: rotating anode3134 reflections with I > 2σ(I)
graphite multilayerRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
[var phi] and ω scansh = −14→15
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −25→25
Tmin = 0.848, Tmax = 0.937l = −8→8
14409 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.089w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1747P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3468 reflectionsΔρmax = 0.16 e Å3
194 parametersΔρmin = −0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 1561 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.58821 (4)0.24616 (2)0.00652 (10)0.04345 (12)
Cl0.49572 (6)0.44910 (4)0.73907 (14)0.0840 (2)
O10.32383 (10)0.13450 (6)−0.0716 (2)0.0445 (3)
O20.69629 (11)0.21294 (7)0.0504 (3)0.0574 (4)
C10.48058 (14)0.18533 (8)0.0312 (3)0.0377 (4)
C20.45571 (14)0.13178 (8)0.1815 (3)0.0373 (4)
C30.50175 (15)0.10563 (9)0.3645 (3)0.0418 (4)
C40.44487 (17)0.05245 (10)0.4608 (3)0.0483 (5)
H40.47390.03430.58210.058*
C50.34541 (15)0.02446 (10)0.3847 (4)0.0503 (5)
C60.30164 (16)0.04966 (9)0.2031 (4)0.0478 (5)
H60.23690.03190.14730.057*
C70.35838 (16)0.10246 (9)0.1083 (3)0.0400 (4)
C80.40014 (15)0.18465 (9)−0.1136 (3)0.0405 (4)
C90.60623 (18)0.13287 (11)0.4595 (3)0.0535 (5)
H9A0.58970.17280.54160.080*
H9B0.65710.14530.35210.080*
H9C0.63860.09790.54520.080*
C100.2873 (2)−0.03139 (12)0.5061 (6)0.0758 (7)
H10A0.2113−0.03340.46520.114*
H10B0.2919−0.02120.65090.114*
H10C0.3219−0.07500.47920.114*
C110.37730 (19)0.22734 (11)−0.2970 (4)0.0509 (5)
H11A0.31260.2547−0.27290.076*
H11B0.36540.1980−0.41440.076*
H11C0.43900.2571−0.32320.076*
C120.55633 (14)0.30025 (8)0.2240 (3)0.0390 (4)
C130.45411 (16)0.33225 (10)0.2400 (4)0.0485 (5)
H130.39860.32260.14530.058*
C140.43614 (17)0.37853 (10)0.3984 (4)0.0522 (5)
H140.36840.40060.41110.063*
C150.51924 (18)0.39180 (9)0.5371 (4)0.0491 (5)
C160.62023 (17)0.36065 (9)0.5241 (4)0.0497 (4)
H160.67480.36990.62110.060*
C170.63960 (16)0.31487 (10)0.3627 (4)0.0464 (5)
H170.70840.29420.34830.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0401 (2)0.0491 (2)0.0411 (2)−0.00916 (18)0.0045 (2)0.0011 (2)
Cl0.0895 (5)0.0805 (4)0.0819 (5)0.0023 (4)0.0111 (4)−0.0341 (4)
O10.0401 (7)0.0475 (7)0.0461 (8)−0.0058 (5)−0.0063 (6)0.0037 (6)
O20.0389 (7)0.0638 (8)0.0695 (11)−0.0017 (6)0.0088 (7)−0.0075 (8)
C10.0372 (8)0.0412 (8)0.0347 (9)−0.0036 (6)0.0007 (8)−0.0015 (7)
C20.0358 (9)0.0383 (8)0.0377 (9)0.0011 (7)0.0055 (8)−0.0016 (7)
C30.0408 (9)0.0443 (9)0.0403 (10)0.0061 (7)0.0006 (8)−0.0016 (8)
C40.0461 (10)0.0503 (10)0.0485 (12)0.0094 (8)0.0031 (9)0.0120 (8)
C50.0449 (11)0.0427 (9)0.0632 (14)0.0044 (7)0.0116 (10)0.0114 (9)
C60.0366 (9)0.0418 (8)0.0649 (14)−0.0034 (7)0.0024 (9)0.0049 (9)
C70.0381 (9)0.0405 (8)0.0416 (10)0.0022 (7)0.0013 (8)0.0001 (8)
C80.0407 (9)0.0428 (9)0.0380 (10)−0.0026 (7)0.0010 (8)−0.0006 (7)
C90.0506 (12)0.0615 (12)0.0485 (14)0.0018 (9)−0.0076 (10)0.0025 (9)
C100.0633 (14)0.0679 (13)0.096 (2)−0.0044 (11)0.0056 (16)0.0395 (15)
C110.0522 (11)0.0588 (11)0.0416 (11)−0.0017 (10)−0.0031 (9)0.0068 (9)
C120.0379 (9)0.0373 (8)0.0417 (10)−0.0054 (7)−0.0014 (8)0.0037 (8)
C130.0431 (10)0.0481 (10)0.0542 (12)−0.0012 (8)−0.0102 (10)0.0042 (9)
C140.0441 (10)0.0460 (10)0.0666 (14)0.0061 (8)−0.0001 (10)0.0011 (10)
C150.0583 (12)0.0382 (9)0.0508 (12)−0.0032 (8)0.0049 (10)−0.0034 (9)
C160.0481 (10)0.0501 (10)0.0509 (12)−0.0060 (8)−0.0088 (11)−0.0027 (10)
C170.0358 (9)0.0481 (9)0.0553 (13)−0.0030 (8)−0.0046 (9)−0.0018 (9)

Geometric parameters (Å, °)

S—O21.4878 (15)C9—H9A0.9600
S—C11.7665 (17)C9—H9B0.9600
S—C121.798 (2)C9—H9C0.9600
Cl—C151.740 (2)C10—H10A0.9600
O1—C81.370 (2)C10—H10B0.9600
O1—C71.385 (2)C10—H10C0.9600
C1—C81.353 (3)C11—H11A0.9600
C1—C21.455 (2)C11—H11B0.9600
C2—C71.393 (3)C11—H11C0.9600
C2—C31.405 (3)C12—C171.381 (3)
C3—C41.389 (3)C12—C131.390 (3)
C3—C91.504 (3)C13—C141.380 (3)
C4—C51.411 (3)C13—H130.9300
C4—H40.9300C14—C151.374 (3)
C5—C61.379 (3)C14—H140.9300
C5—C101.512 (3)C15—C161.368 (3)
C6—C71.378 (3)C16—C171.391 (3)
C6—H60.9300C16—H160.9300
C8—C111.474 (3)C17—H170.9300
O2—S—C1110.14 (8)H9A—C9—H9C109.5
O2—S—C12107.01 (9)H9B—C9—H9C109.5
C1—S—C1299.20 (8)C5—C10—H10A109.5
C8—O1—C7106.32 (15)C5—C10—H10B109.5
C8—C1—C2107.89 (15)H10A—C10—H10B109.5
C8—C1—S118.45 (14)C5—C10—H10C109.5
C2—C1—S133.66 (14)H10A—C10—H10C109.5
C7—C2—C3118.46 (16)H10B—C10—H10C109.5
C7—C2—C1103.84 (16)C8—C11—H11A109.5
C3—C2—C1137.70 (17)C8—C11—H11B109.5
C4—C3—C2116.71 (17)H11A—C11—H11B109.5
C4—C3—C9119.73 (19)C8—C11—H11C109.5
C2—C3—C9123.55 (18)H11A—C11—H11C109.5
C3—C4—C5123.59 (19)H11B—C11—H11C109.5
C3—C4—H4118.2C17—C12—C13120.78 (18)
C5—C4—H4118.2C17—C12—S118.16 (14)
C6—C5—C4119.37 (18)C13—C12—S120.72 (15)
C6—C5—C10121.2 (2)C14—C13—C12119.13 (19)
C4—C5—C10119.5 (2)C14—C13—H13120.4
C7—C6—C5116.80 (19)C12—C13—H13120.4
C7—C6—H6121.6C15—C14—C13119.45 (18)
C5—C6—H6121.6C15—C14—H14120.3
C6—C7—O1123.85 (18)C13—C14—H14120.3
C6—C7—C2125.07 (18)C16—C15—C14122.23 (19)
O1—C7—C2111.06 (15)C16—C15—Cl118.38 (18)
C1—C8—O1110.88 (17)C14—C15—Cl119.39 (16)
C1—C8—C11133.50 (17)C15—C16—C17118.6 (2)
O1—C8—C11115.58 (16)C15—C16—H16120.7
C3—C9—H9A109.5C17—C16—H16120.7
C3—C9—H9B109.5C12—C17—C16119.75 (18)
H9A—C9—H9B109.5C12—C17—H17120.1
C3—C9—H9C109.5C16—C17—H17120.1
O2—S—C1—C8−136.54 (15)C1—C2—C7—C6−178.86 (18)
C12—S—C1—C8111.43 (16)C3—C2—C7—O1179.46 (15)
O2—S—C1—C243.6 (2)C1—C2—C7—O1−0.29 (19)
C12—S—C1—C2−68.45 (18)C2—C1—C8—O1−0.3 (2)
C8—C1—C2—C70.3 (2)S—C1—C8—O1179.82 (13)
S—C1—C2—C7−179.78 (15)C2—C1—C8—C11177.3 (2)
C8—C1—C2—C3−179.3 (2)S—C1—C8—C11−2.6 (3)
S—C1—C2—C30.6 (3)C7—O1—C8—C10.1 (2)
C7—C2—C3—C4−0.9 (3)C7—O1—C8—C11−177.95 (16)
C1—C2—C3—C4178.8 (2)O2—S—C12—C1714.13 (17)
C7—C2—C3—C9−179.91 (18)C1—S—C12—C17128.60 (15)
C1—C2—C3—C9−0.3 (3)O2—S—C12—C13−172.53 (15)
C2—C3—C4—C5−0.1 (3)C1—S—C12—C13−58.05 (16)
C9—C3—C4—C5178.97 (19)C17—C12—C13—C14−0.7 (3)
C3—C4—C5—C61.1 (3)S—C12—C13—C14−173.88 (15)
C3—C4—C5—C10−177.4 (2)C12—C13—C14—C15−0.3 (3)
C4—C5—C6—C7−1.1 (3)C13—C14—C15—C160.1 (3)
C10—C5—C6—C7177.4 (2)C13—C14—C15—Cl−178.98 (17)
C5—C6—C7—O1−178.26 (17)C14—C15—C16—C171.0 (3)
C5—C6—C7—C20.1 (3)Cl—C15—C16—C17−179.89 (16)
C8—O1—C7—C6178.73 (19)C13—C12—C17—C161.8 (3)
C8—O1—C7—C20.14 (19)S—C12—C17—C16175.18 (16)
C3—C2—C7—C60.9 (3)C15—C16—C17—C12−2.0 (3)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 4-chlorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.623.471 (2)152
C11—H11C···Cgii0.962.853.667 (2)144

Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2330).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o2325. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography