PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2722–o2723.
Published online 2010 October 9. doi:  10.1107/S1600536810039036
PMCID: PMC3009118

N-(4-Bromo­phen­yl)pyrazine-2-carbox­amide

Abstract

The mol­ecule of the title compound, C11H8BrN3O, is close to planar (r.m.s. deviation of all 16 non-H atoms = 0.103 Å), a conformation stabilized by an intra­molecular N—H(...)N hydrogen bond, which generates an S(5) ring. In the crystal structure, supra­molecular chains mediated by C—H(...)O contacts (along a) are linked into a double layer via N(...)Br halogen bonds [3.207 (5) Å] and C—Br(...)π inter­actions [Br(...)ring centroid(pyrazine) = 3.446 (3) Å]. The layers stack along the b axis via weak π–π inter­actions [ring centroid(pyrazine)(...)ring centroid(benzene) distance = 3.803 (4) Å].

Related literature

For the anti­mycobacterial activity of pyrazinamide, see: Chaisson et al. (2002 [triangle]); Gordin et al. (2000 [triangle]); de Souza (2006 [triangle]). For structural studies of pyrazinamide derivatives; see: Baddeley et al. (2009 [triangle]); Howie et al. (2010a [triangle],b [triangle],c [triangle],d [triangle]). For the synthesis, see: Wardell et al. (2008 [triangle]); Vontor et al. (1989 [triangle]). For background to halogen bonding, see: Metrangolo et al. (2008 [triangle]); Pennington et al. (2008 [triangle]). For graph-set nomenclature of hydrogen bonds, see: Bernstein et al. (1995 [triangle]). For details of software used to analyse the shape of the mol­ecule, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2722-scheme1.jpg

Experimental

Crystal data

  • C11H8BrN3O
  • M r = 278.11
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2722-efi1.jpg
  • a = 5.8396 (4) Å
  • b = 7.3317 (7) Å
  • c = 13.3362 (12) Å
  • α = 101.670 (4)°
  • β = 96.728 (5)°
  • γ = 110.524 (5)°
  • V = 512.55 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.99 mm−1
  • T = 120 K
  • 0.18 × 0.10 × 0.02 mm

Data collection

  • Enraf–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.764, T max = 1.000
  • 8923 measured reflections
  • 2110 independent reflections
  • 1792 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.163
  • S = 1.18
  • 2110 reflections
  • 148 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039036/hb5661sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039036/hb5661Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray Crystallographic Service at the University of Southampton, England, and the valuable assistance of the staff there are gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Pyrazinamide has well known anti-mycobacterial activity and is the one of the most important drugs used in tuberculosis treatment (Chaisson et al., 2002; Gordin et al., 2000; de Souza, 2006). In continuation of our studies on pyrazinamide derivatives (Wardell et al., 2008; Baddeley et al., 2009; Howie et al., 2010a,b,c,d), we report the structure of N-(4-bromophenyl)pyrazine-2-carboxamide, the title compound, (I).

The molecular structure of (I), Fig. 1, is essentially planar with the dihedral angle formed between the pyrazine and benzene rings being 10.2 (3)°; the r.m.s. deviation of all 16 non-H atoms = 0.103 Å (Spek, 2009). The observed conformation is stabilized by an intramolecular N—H···N hydrogen bond, Table 1.

An analysis of the crystal packing reveals C—H···O, N···Br, Br···π, and π–π interactions. The C—H···O contacts lead to the formation of a supramolecular chain with a flat topology along the a axis. These are sustained in the crystal packing by N···Br halogen bonding [N2···Br1 = 3.207 (5) Å for i: 1 + x, y, 1 + z] (Metrangolo et al., 2008; Pennington et al., 2008), as well as Br···π contacts [C5—Br1···Cg(N2,N3,C8–C11)ii = 3.446 (3) Å, angle at Br1 = 94.59 (18)° for ii: 1 - x, 1 - y, -z]. The resulting double layers stack along the b axis, Fig. 3, with the closest interactions between them being of the form π–π [ring centroid(N2,N3,C8–C11)···ring centroid(C2–C7)iii = 3.803 (4) Å, angle of inclination = 10.2 (3)° for iii: 1 - x, -y, -z].

Experimental

N-(4-Bromophenyl)pyrazine-2-carboxamide was prepared following the general procedure for N-arylpyrazine-2-carboxamides (Wardell et al., 2008). Yield: 48%; m.p. 473 K, lit. value 471–474 K (Vontor et al., 1989). The colourless plate of (I) used for the structure determination was grown from the slow evaporation of its ethanol solution.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located from a difference map and refined with the distance restraint N—H = 0.88 (1) Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular chain in (I) aligned along the a axis. The C—H···O contacts are as orange dashed lines.
Fig. 3.
A view in projection down the a axis of the crystal packing in (I) highlighting the stacking of double layers. The C—H···O, N···Br, and Br···π contacts are shown as ...

Crystal data

C11H8BrN3OZ = 2
Mr = 278.11F(000) = 276
Triclinic, P1Dx = 1.802 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8396 (4) ÅCell parameters from 22175 reflections
b = 7.3317 (7) Åθ = 2.9–27.5°
c = 13.3362 (12) ŵ = 3.99 mm1
α = 101.670 (4)°T = 120 K
β = 96.728 (5)°Plate, colourless
γ = 110.524 (5)°0.18 × 0.10 × 0.02 mm
V = 512.55 (8) Å3

Data collection

Enraf–Nonius KappaCCD diffractometer2110 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode1792 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.078
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 3.1°
[var phi] and ω scansh = −7→7
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −9→9
Tmin = 0.764, Tmax = 1.000l = −16→16
8923 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.18w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
2110 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = −0.52 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.20472 (10)0.24870 (9)−0.39064 (4)0.0227 (2)
O10.8942 (7)0.2880 (7)0.0884 (3)0.0259 (10)
N10.4828 (9)0.2414 (8)0.0622 (4)0.0204 (10)
H1N0.366 (9)0.234 (10)0.099 (5)0.024*
N20.9106 (9)0.2715 (8)0.3965 (4)0.0223 (11)
N30.4723 (9)0.2202 (8)0.2621 (4)0.0212 (11)
C10.6982 (10)0.2603 (8)0.1192 (4)0.0193 (12)
C20.4304 (10)0.2444 (8)−0.0435 (4)0.0170 (11)
C30.1796 (10)0.1859 (9)−0.0902 (5)0.0211 (12)
H30.05310.1461−0.05120.025*
C40.1156 (10)0.1861 (9)−0.1937 (5)0.0215 (12)
H4−0.05490.1452−0.22570.026*
C50.2979 (11)0.2453 (8)−0.2498 (5)0.0192 (12)
C60.5492 (11)0.3087 (9)−0.2035 (5)0.0210 (12)
H60.67450.3519−0.24270.025*
C70.6156 (11)0.3088 (9)−0.1011 (5)0.0205 (12)
H70.78680.3525−0.06940.025*
C80.6915 (11)0.2522 (9)0.2304 (4)0.0203 (12)
C90.9064 (11)0.2777 (9)0.2980 (5)0.0198 (12)
H91.05650.30040.27240.024*
C100.6933 (11)0.2377 (10)0.4279 (5)0.0229 (13)
H100.68700.23030.49790.028*
C110.4790 (11)0.2134 (10)0.3620 (5)0.0243 (13)
H110.33000.19090.38830.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0268 (4)0.0286 (4)0.0140 (3)0.0123 (3)0.0025 (2)0.0066 (2)
O10.021 (2)0.040 (3)0.019 (2)0.0123 (19)0.0067 (17)0.010 (2)
N10.018 (2)0.031 (3)0.013 (2)0.011 (2)0.0028 (18)0.005 (2)
N20.022 (2)0.030 (3)0.020 (3)0.013 (2)0.003 (2)0.012 (2)
N30.018 (2)0.024 (3)0.017 (3)0.005 (2)0.0011 (19)0.004 (2)
C10.020 (3)0.015 (3)0.019 (3)0.005 (2)0.003 (2)0.002 (2)
C20.025 (3)0.017 (3)0.008 (3)0.006 (2)0.003 (2)0.005 (2)
C30.016 (3)0.026 (3)0.020 (3)0.008 (2)0.005 (2)0.004 (2)
C40.019 (3)0.027 (3)0.019 (3)0.011 (2)0.002 (2)0.004 (2)
C50.026 (3)0.016 (3)0.018 (3)0.011 (2)0.005 (2)0.007 (2)
C60.023 (3)0.026 (3)0.017 (3)0.011 (2)0.009 (2)0.008 (2)
C70.018 (3)0.023 (3)0.021 (3)0.007 (2)0.000 (2)0.010 (2)
C80.026 (3)0.022 (3)0.015 (3)0.011 (2)0.004 (2)0.004 (2)
C90.022 (3)0.020 (3)0.019 (3)0.010 (2)0.007 (2)0.004 (2)
C100.029 (3)0.034 (3)0.013 (3)0.014 (3)0.012 (2)0.013 (2)
C110.024 (3)0.033 (3)0.021 (3)0.012 (3)0.014 (3)0.012 (3)

Geometric parameters (Å, °)

Br1—C51.901 (6)C3—H30.9500
O1—C11.226 (6)C4—C51.369 (8)
N1—C11.337 (7)C4—H40.9500
N1—C21.413 (7)C5—C61.394 (8)
N1—H1N0.88 (6)C6—C71.375 (8)
N2—C91.321 (8)C6—H60.9500
N2—C101.339 (8)C7—H70.9500
N3—C111.340 (8)C8—C91.387 (8)
N3—C81.352 (8)C9—H90.9500
C1—C81.501 (8)C10—C111.376 (8)
C2—C31.398 (8)C10—H100.9500
C2—C71.402 (8)C11—H110.9500
C3—C41.387 (8)
C1—N1—C2128.5 (5)C6—C5—Br1120.2 (4)
C1—N1—H1N113 (5)C7—C6—C5120.0 (5)
C2—N1—H1N119 (5)C7—C6—H6120.0
C9—N2—C10116.0 (5)C5—C6—H6120.0
C11—N3—C8115.2 (5)C6—C7—C2120.0 (5)
O1—C1—N1125.4 (6)C6—C7—H7120.0
O1—C1—C8119.5 (5)C2—C7—H7120.0
N1—C1—C8115.1 (5)N3—C8—C9121.6 (5)
C3—C2—C7119.4 (5)N3—C8—C1118.2 (5)
C3—C2—N1117.1 (5)C9—C8—C1120.2 (5)
C7—C2—N1123.5 (5)N2—C9—C8122.6 (5)
C4—C3—C2120.0 (5)N2—C9—H9118.7
C4—C3—H3120.0C8—C9—H9118.7
C2—C3—H3120.0N2—C10—C11122.1 (5)
C5—C4—C3120.1 (5)N2—C10—H10119.0
C5—C4—H4120.0C11—C10—H10119.0
C3—C4—H4120.0N3—C11—C10122.6 (5)
C4—C5—C6120.6 (6)N3—C11—H11118.7
C4—C5—Br1119.1 (4)C10—C11—H11118.7
C2—N1—C1—O11.4 (10)N1—C2—C7—C6−179.5 (6)
C2—N1—C1—C8179.5 (5)C11—N3—C8—C9−0.6 (8)
C1—N1—C2—C3169.0 (5)C11—N3—C8—C1179.6 (5)
C1—N1—C2—C7−13.3 (9)O1—C1—C8—N3−179.6 (5)
C7—C2—C3—C42.0 (9)N1—C1—C8—N32.2 (8)
N1—C2—C3—C4179.8 (5)O1—C1—C8—C90.6 (8)
C2—C3—C4—C5−0.6 (9)N1—C1—C8—C9−177.6 (5)
C3—C4—C5—C6−1.0 (9)C10—N2—C9—C80.4 (9)
C3—C4—C5—Br1−178.8 (4)N3—C8—C9—N20.3 (9)
C4—C5—C6—C71.2 (9)C1—C8—C9—N2−179.9 (5)
Br1—C5—C6—C7179.0 (4)C9—N2—C10—C11−0.8 (9)
C5—C6—C7—C20.2 (9)C8—N3—C11—C100.2 (9)
C3—C2—C7—C6−1.8 (9)N2—C10—C11—N30.5 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.88 (6)2.22 (6)2.708 (7)115 (5)
C3—H3···O1i0.952.393.177 (8)140

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5661).

References

  • Baddeley, T. C., Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2009). Z. Kristallogr.224, 506–514.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Chaisson, R. E., Armstrong, J., Stafford, J., Golub, J. & Bur, S. (2002). J. Am. Med. Assoc.288, 165–166. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gordin, F., Chaisson, R. E., Matts, J. P., Miller, C., Garcia, M. de L., Hafner, R., Valdespino, J. L., Coberly, J., Schechter, M., Klukowicz, A. J., Barry, M. A. & O’Brien, R. J. (2000). J. Am. Med. Assoc.283, 1445–1450. [PubMed]
  • Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010a). Z. Kristallogr.225, 19–28.
  • Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010b). Z. Kristallogr.225, 158–166.
  • Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. N., Wardell, J. L. & Wardell, S. M. V. (2010c). Z. Kristallogr.225, 245–252.
  • Howie, R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010d). Acta Cryst. E66, o178–o179. [PMC free article] [PubMed]
  • Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond.126, 105–136.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond.126, 65–104.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Souza, M. V. N. de (2006). Recent Pat. Anti-Infec. Drug Discov.1, 33–45. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vontor, T., Palat, K., Danek, J. & Lycka, A. (1989). Cesk. Farm.38, 393–397.
  • Wardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84–100. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography