PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2977.
Published online 2010 October 30. doi:  10.1107/S1600536810043072
PMCID: PMC3009115

2-[(2-Bromo­phen­yl)imino­meth­yl]-6-methyl­phenol

Abstract

In the title compound, C14H12BrNO, is a Schiff base which adopts the phenol–imine tautomeric form in the solid state. The dihedral angle between the two aromatic rings is 34.26 (9)° and an intra­molecular O—H(...)N hydrogen bond generates an S(6) ring.

Related literature

For Schiff bases and their applications, see: Calligaris et al. (1972 [triangle]); Singh et al. (1975 [triangle]). For a related structure, see: Temel et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2977-scheme1.jpg

Experimental

Crystal data

  • C14H12BrNO
  • M r = 290.16
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2977-efi1.jpg
  • a = 7.9407 (4) Å
  • b = 11.6754 (8) Å
  • c = 13.1960 (6) Å
  • V = 1223.41 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.34 mm−1
  • T = 296 K
  • 0.47 × 0.39 × 0.24 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.358, T max = 0.525
  • 21115 measured reflections
  • 2929 independent reflections
  • 2427 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.080
  • S = 1.07
  • 2929 reflections
  • 160 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1229 Friedel pairs
  • Flack parameter: −0.003 (10)

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043072/bt5384sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043072/bt5384Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

supplementary crystallographic information

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff bases derived from aromatic amines and aromatic aldehydes have a wide variety of applications in many fields, e.g., biological, inorganic and analytical chemistry (Singh et al., 1975).

Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom.

The overall behaviour of these compounds has been ascribed to a proton-transfer reaction between a phenol-imine and a keto-amine tautomer. In solution, the existence of this tautomerism, which depends on the formation of intramolecular hydrogen bonds, is possible.

X-ray investigation of the title compound, (I), has indicated that the phenol-imine tautomer is favoured over the keto-amine tautomer. Bond lengths (Fig. 1) C2—O1 [1.364 (3) Å], C7—N1 [1.285 (3) Å], C1—C7 [1.451 (4) Å] and C1—C2 [1.403 (4) Å]. The C2—O1 bond length of 1.364 (3) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.285 (3) Å indicates a high degree of double-bond character. Similar results were observed for (E)-3-[(2- fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel et al., 2007].

N···H—O hydrogen bond generate an S(6) ring motif (Fig. 1).

Experimental

The compound 2-[(2-Bromophenylimino) methyl]-6- methylphenol was prepared by reflux a mixture of a solution containing 3-Methylsalicylaldehyde (0.05 g 0.36 mmol) in 20 ml e thanol and a solution containing 2-Bromoaniline(0.062 g 0.36 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of 2-[(2-Bromophenylimino) methyl]-6- methylphenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 63; m.p.418–420 K).

Refinement

H atoms were positioned geometrically with distances 0.93 Å for aromatic C—H, 0.97 Å for methylene C—H, 0.86 Å for O—H hydroxyl group and refined a riding model with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability.

Crystal data

C14H12BrNOF(000) = 584
Mr = 290.16Dx = 1.575 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 23647 reflections
a = 7.9407 (4) Åθ = 2.3–28.0°
b = 11.6754 (8) ŵ = 3.34 mm1
c = 13.1960 (6) ÅT = 296 K
V = 1223.41 (12) Å3Prism, yellow
Z = 40.47 × 0.39 × 0.24 mm

Data collection

Stoe IPDS 2 diffractometer2929 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
graphiteRint = 0.067
Detector resolution: 6.67 pixels mm-1θmax = 28.0°, θmin = 2.3°
rotation method scansh = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −15→15
Tmin = 0.358, Tmax = 0.525l = −17→17
21115 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035w = 1/[σ2(Fo2) + (0.0416P)2 + 0.0403P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.64 e Å3
2929 reflectionsΔρmin = −0.27 e Å3
160 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0200 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1229 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.003 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H10.744 (4)0.652 (3)0.652 (3)0.062 (9)*
Br10.79638 (5)0.84452 (3)0.81971 (3)0.07572 (15)
C40.7065 (4)0.5259 (2)0.3545 (2)0.0582 (7)
H40.64000.49450.30360.070*
N10.9650 (3)0.68078 (17)0.67303 (16)0.0487 (5)
C71.0181 (3)0.6620 (2)0.58252 (19)0.0477 (5)
H71.13020.67680.56690.057*
C50.8731 (4)0.5467 (3)0.3351 (2)0.0609 (7)
H50.91810.52920.27190.073*
C10.9072 (3)0.6182 (2)0.50413 (18)0.0452 (5)
O10.6641 (2)0.62056 (19)0.61369 (15)0.0596 (5)
C20.7361 (3)0.5966 (2)0.52228 (18)0.0457 (6)
C101.3450 (4)0.7113 (3)0.8347 (3)0.0666 (8)
H101.45530.68480.83800.080*
C131.0198 (4)0.7883 (2)0.8254 (2)0.0527 (6)
C91.2424 (4)0.6774 (2)0.7555 (2)0.0569 (7)
H91.28430.62840.70600.068*
C60.9732 (4)0.5931 (3)0.40857 (19)0.0568 (7)
H61.08600.60800.39490.068*
C30.6334 (4)0.5500 (2)0.4475 (2)0.0503 (6)
C81.0769 (3)0.7162 (2)0.7491 (2)0.0482 (6)
C111.2857 (5)0.7834 (3)0.9084 (3)0.0683 (8)
H111.35570.80590.96130.082*
C140.4513 (4)0.5289 (3)0.4673 (3)0.0710 (8)
H14A0.43960.47700.52330.106*
H14B0.40030.49600.40810.106*
H14C0.39670.60000.48320.106*
C121.1230 (5)0.8226 (3)0.9041 (2)0.0626 (8)
H121.08230.87180.95380.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0655 (2)0.0941 (2)0.06760 (19)0.01958 (17)0.00516 (17)−0.00921 (17)
C40.0647 (17)0.0583 (15)0.0515 (13)0.0010 (15)−0.0149 (14)−0.0035 (11)
N10.0488 (11)0.0516 (11)0.0456 (10)−0.0009 (8)−0.0020 (10)−0.0013 (10)
C70.0435 (12)0.0506 (12)0.0490 (13)−0.0016 (12)0.0018 (11)0.0009 (12)
C50.0707 (18)0.0695 (17)0.0425 (14)0.0056 (15)0.0005 (13)−0.0047 (13)
C10.0471 (13)0.0462 (13)0.0422 (11)0.0007 (10)0.0007 (11)0.0048 (9)
O10.0456 (10)0.0832 (14)0.0500 (10)−0.0008 (9)0.0042 (9)−0.0049 (9)
C20.0469 (14)0.0450 (12)0.0450 (12)0.0035 (10)0.0006 (10)0.0046 (10)
C100.0527 (16)0.0665 (17)0.081 (2)−0.0055 (13)−0.0152 (15)−0.0016 (16)
C130.0576 (15)0.0524 (13)0.0482 (13)−0.0044 (12)0.0004 (14)0.0009 (13)
C90.0486 (15)0.0564 (16)0.0657 (16)−0.0019 (11)−0.0052 (12)−0.0064 (12)
C60.0542 (15)0.0695 (17)0.0467 (14)0.0024 (13)0.0078 (13)0.0004 (13)
C30.0466 (13)0.0507 (13)0.0536 (14)0.0009 (11)−0.0083 (12)0.0049 (11)
C80.0492 (14)0.0464 (13)0.0489 (13)−0.0062 (11)−0.0030 (12)0.0016 (11)
C110.073 (2)0.0618 (17)0.0697 (18)−0.0122 (16)−0.0224 (18)0.0005 (14)
C140.0507 (17)0.083 (2)0.079 (2)−0.0072 (15)−0.0082 (16)−0.0021 (18)
C120.077 (2)0.0556 (17)0.0554 (15)−0.0096 (15)−0.0013 (15)−0.0058 (13)

Geometric parameters (Å, °)

Br1—C131.893 (3)C10—C111.370 (5)
C4—C51.370 (5)C10—C91.383 (4)
C4—C31.386 (4)C10—H100.9300
C4—H40.9300C13—C121.382 (4)
N1—C71.285 (3)C13—C81.388 (4)
N1—C81.402 (3)C9—C81.392 (4)
C7—C11.451 (4)C9—H90.9300
C7—H70.9300C6—H60.9300
C5—C61.366 (4)C3—C141.490 (4)
C5—H50.9300C11—C121.372 (5)
C1—C61.397 (4)C11—H110.9300
C1—C21.403 (4)C14—H14A0.9600
O1—C21.364 (3)C14—H14B0.9600
O1—H10.89 (4)C14—H14C0.9600
C2—C31.390 (4)C12—H120.9300
C5—C4—C3122.3 (3)C10—C9—H9119.7
C5—C4—H4118.9C8—C9—H9119.7
C3—C4—H4118.9C5—C6—C1120.4 (3)
C7—N1—C8120.5 (2)C5—C6—H6119.8
N1—C7—C1121.6 (2)C1—C6—H6119.8
N1—C7—H7119.2C4—C3—C2117.5 (3)
C1—C7—H7119.2C4—C3—C14121.8 (3)
C6—C5—C4120.0 (3)C2—C3—C14120.7 (3)
C6—C5—H5120.0C13—C8—C9117.4 (3)
C4—C5—H5120.0C13—C8—N1119.4 (3)
C6—C1—C2118.7 (2)C9—C8—N1123.1 (2)
C6—C1—C7119.3 (3)C10—C11—C12119.9 (3)
C2—C1—C7122.0 (2)C10—C11—H11120.0
C2—O1—H1107 (2)C12—C11—H11120.0
O1—C2—C3117.5 (2)C3—C14—H14A109.5
O1—C2—C1121.3 (2)C3—C14—H14B109.5
C3—C2—C1121.2 (2)H14A—C14—H14B109.5
C11—C10—C9120.7 (3)C3—C14—H14C109.5
C11—C10—H10119.7H14A—C14—H14C109.5
C9—C10—H10119.7H14B—C14—H14C109.5
C12—C13—C8121.8 (3)C11—C12—C13119.5 (3)
C12—C13—Br1119.0 (2)C11—C12—H12120.2
C8—C13—Br1119.2 (2)C13—C12—H12120.2
C10—C9—C8120.6 (3)
C8—N1—C7—C1176.0 (2)C1—C2—C3—C40.0 (4)
C3—C4—C5—C6−0.2 (5)O1—C2—C3—C140.7 (4)
N1—C7—C1—C6−176.4 (3)C1—C2—C3—C14−179.2 (3)
N1—C7—C1—C21.4 (4)C12—C13—C8—C91.1 (4)
C6—C1—C2—O1−179.3 (2)Br1—C13—C8—C9179.5 (2)
C7—C1—C2—O12.9 (4)C12—C13—C8—N1177.7 (2)
C6—C1—C2—C30.6 (4)Br1—C13—C8—N1−4.0 (3)
C7—C1—C2—C3−177.2 (2)C10—C9—C8—C13−0.7 (4)
C11—C10—C9—C80.1 (5)C10—C9—C8—N1−177.1 (3)
C4—C5—C6—C10.8 (5)C7—N1—C8—C13147.8 (2)
C2—C1—C6—C5−1.0 (4)C7—N1—C8—C9−35.8 (4)
C7—C1—C6—C5176.9 (3)C9—C10—C11—C120.1 (5)
C5—C4—C3—C2−0.2 (4)C10—C11—C12—C130.3 (5)
C5—C4—C3—C14179.0 (3)C8—C13—C12—C11−0.9 (4)
O1—C2—C3—C4179.9 (2)Br1—C13—C12—C11−179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (4)1.81 (3)2.611 (3)149 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5384).

References

  • Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev.7, 385–403.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc.52, 958–959.
  • Stoe & Cie (2002). X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.
  • Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography