PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2765.
Published online 2010 October 9. doi:  10.1107/S1600536810039723
PMCID: PMC3009109

5-(2,3,4,5,6-Penta­fluoro­phen­yl)-1,3,4-thia­diazol-2-amine

Abstract

The title compound, C8H2F5N3S, was synthesized by the reaction of perfluoro­benzoic acid and thio­semicarbazide. The dihedral angle between the thia­diazole and perfluoro­phenyl ring is 35.41 (6)°. In the crystal, inter­molecular N—H(...)N hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For the fungicidal and herbicidal activity of thia­diazole deriv­atives, see: Chen et al. (2000 [triangle]); Kidwai et al. (2000 [triangle]); Vicentini et al. (1998 [triangle]) and for their insecticidal activity, see: Arun et al. (1999 [triangle]); Wasfy et al. (1996 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2765-scheme1.jpg

Experimental

Crystal data

  • C8H2F5N3S
  • M r = 267.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2765-efi1.jpg
  • a = 11.897 (2) Å
  • b = 7.0680 (14) Å
  • c = 11.553 (2) Å
  • β = 104.66 (3)°
  • V = 939.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.889, T max = 0.961
  • 3428 measured reflections
  • 1709 independent reflections
  • 1283 reflections with I > 2σ(I)
  • R int = 0.064
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.128
  • S = 1.00
  • 1709 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039723/er2081sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039723/er2081Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal and herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998); some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996).

We report here the crystal structure of the title compound,(I). The molecular structure of (I) is shown in Fig.1, in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Ring(C1/S/C2/N3/N2) is planar, and the mean deviation from plane is 0.0012 Angstroms. The dihedral angle between the thiadiazole and perfluorophenyl ring is 35.41 (6)°. In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

Perfluorobenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 523–525 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···N hydrogen bonds.

Crystal data

C8H2F5N3SF(000) = 528
Mr = 267.19Dx = 1.888 Mg m3
Monoclinic, P21/cMelting point = 523–525 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.897 (2) ÅCell parameters from 25 reflections
b = 7.0680 (14) Åθ = 9–13°
c = 11.553 (2) ŵ = 0.40 mm1
β = 104.66 (3)°T = 293 K
V = 939.8 (3) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1283 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = −14→0
Absorption correction: ψ scan (North et al., 1968)k = −8→8
Tmin = 0.889, Tmax = 0.961l = −13→13
3428 measured reflections3 standard reflections every 200 reflections
1709 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.080P)2] where P = (Fo2 + 2Fc2)/3
1709 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.82940 (7)0.06662 (10)0.05893 (6)0.0461 (3)
F10.78775 (15)−0.3360 (2)−0.00245 (14)0.0569 (5)
C10.9155 (2)0.2602 (4)0.0479 (2)0.0404 (6)
N10.9659 (2)0.3683 (4)0.1416 (2)0.0524 (6)
H1A1.01050.46010.13300.063*
H1B0.95370.34590.21060.063*
C20.8165 (2)0.0294 (4)−0.0925 (2)0.0389 (6)
F20.65099 (17)−0.6042 (2)−0.12921 (18)0.0685 (6)
N20.9298 (2)0.2855 (4)−0.06011 (19)0.0472 (6)
F30.53266 (17)−0.5342 (3)−0.35867 (18)0.0747 (6)
N30.8725 (2)0.1519 (3)−0.13946 (19)0.0451 (6)
C30.7437 (2)−0.1198 (4)−0.1630 (2)0.0387 (6)
F40.55308 (16)−0.1942 (3)−0.45890 (14)0.0689 (6)
C40.7312 (2)−0.2972 (4)−0.1154 (2)0.0429 (6)
F50.68393 (17)0.0780 (2)−0.33282 (15)0.0609 (5)
C50.6609 (3)−0.4358 (4)−0.1800 (3)0.0489 (7)
C60.6009 (2)−0.4016 (4)−0.2954 (3)0.0502 (7)
C70.6116 (2)−0.2282 (4)−0.3459 (2)0.0482 (7)
C80.6812 (2)−0.0900 (4)−0.2800 (2)0.0453 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0633 (5)0.0429 (4)0.0347 (4)−0.0129 (3)0.0171 (3)−0.0005 (3)
F10.0665 (10)0.0469 (10)0.0521 (10)−0.0049 (8)0.0052 (8)0.0130 (8)
C10.0472 (14)0.0406 (15)0.0352 (13)−0.0044 (12)0.0139 (12)−0.0027 (11)
N10.0725 (16)0.0530 (15)0.0339 (12)−0.0221 (13)0.0176 (11)−0.0081 (10)
C20.0477 (14)0.0358 (14)0.0354 (13)−0.0023 (11)0.0147 (12)−0.0012 (11)
F20.0801 (13)0.0418 (10)0.0824 (14)−0.0148 (9)0.0184 (11)0.0058 (9)
N20.0600 (14)0.0494 (14)0.0368 (12)−0.0185 (11)0.0206 (11)−0.0092 (10)
F30.0815 (13)0.0659 (13)0.0740 (13)−0.0330 (10)0.0145 (11)−0.0233 (10)
N30.0586 (14)0.0442 (13)0.0362 (12)−0.0136 (11)0.0191 (11)−0.0087 (10)
C30.0450 (14)0.0351 (14)0.0378 (13)−0.0027 (11)0.0139 (11)−0.0040 (11)
F40.0762 (12)0.0821 (14)0.0411 (9)−0.0162 (11)0.0012 (8)−0.0056 (9)
C40.0458 (15)0.0405 (15)0.0426 (15)−0.0010 (12)0.0114 (12)0.0025 (12)
F50.0840 (12)0.0443 (10)0.0477 (10)−0.0082 (9)0.0041 (9)0.0086 (7)
C50.0553 (16)0.0349 (15)0.0603 (18)−0.0060 (13)0.0217 (14)−0.0005 (13)
C60.0508 (16)0.0486 (17)0.0531 (17)−0.0159 (14)0.0165 (14)−0.0172 (13)
C70.0492 (16)0.0547 (18)0.0406 (15)−0.0051 (13)0.0108 (13)−0.0087 (13)
C80.0542 (16)0.0404 (15)0.0429 (15)−0.0015 (12)0.0155 (13)−0.0008 (11)

Geometric parameters (Å, °)

S—C11.733 (3)N2—N31.372 (3)
S—C21.737 (3)F3—C61.331 (3)
F1—C41.336 (3)C3—C81.383 (4)
C1—N21.313 (3)C3—C41.392 (4)
C1—N11.337 (3)F4—C71.336 (3)
N1—H1A0.8600C4—C51.379 (4)
N1—H1B0.8600F5—C81.339 (3)
C2—N31.292 (3)C5—C61.365 (5)
C2—C31.473 (4)C6—C71.377 (4)
F2—C51.345 (3)C7—C81.379 (4)
C1—S—C287.05 (12)F1—C4—C5118.0 (3)
N2—C1—N1123.5 (2)F1—C4—C3119.5 (2)
N2—C1—S113.5 (2)C5—C4—C3122.4 (3)
N1—C1—S122.92 (19)F2—C5—C6120.1 (3)
C1—N1—H1A120.0F2—C5—C4120.0 (3)
C1—N1—H1B120.0C6—C5—C4119.9 (3)
H1A—N1—H1B120.0F3—C6—C5120.5 (3)
N3—C2—C3122.8 (2)F3—C6—C7120.2 (3)
N3—C2—S113.4 (2)C5—C6—C7119.3 (2)
C3—C2—S123.72 (19)F4—C7—C6119.5 (2)
C1—N2—N3112.3 (2)F4—C7—C8120.3 (3)
C2—N3—N2113.8 (2)C6—C7—C8120.2 (3)
C8—C3—C4116.0 (2)F5—C8—C7117.2 (2)
C8—C3—C2121.8 (2)F5—C8—C3120.8 (2)
C4—C3—C2122.2 (2)C7—C8—C3122.1 (3)
C2—S—C1—N2−0.2 (2)F1—C4—C5—C6179.5 (3)
C2—S—C1—N1−177.7 (3)C3—C4—C5—C60.3 (4)
C1—S—C2—N30.2 (2)F2—C5—C6—F3−0.4 (4)
C1—S—C2—C3−176.3 (2)C4—C5—C6—F3−179.9 (3)
N1—C1—N2—N3177.7 (3)F2—C5—C6—C7179.7 (2)
S—C1—N2—N30.2 (3)C4—C5—C6—C70.2 (4)
C3—C2—N3—N2176.4 (2)F3—C6—C7—F40.0 (4)
S—C2—N3—N2−0.2 (3)C5—C6—C7—F4179.9 (3)
C1—N2—N3—C20.0 (4)F3—C6—C7—C8179.3 (3)
N3—C2—C3—C8−34.3 (4)C5—C6—C7—C8−0.8 (4)
S—C2—C3—C8141.9 (2)F4—C7—C8—F52.1 (4)
N3—C2—C3—C4147.3 (3)C6—C7—C8—F5−177.2 (3)
S—C2—C3—C4−36.4 (4)F4—C7—C8—C3−179.6 (2)
C8—C3—C4—F1−179.2 (2)C6—C7—C8—C31.1 (4)
C2—C3—C4—F1−0.8 (4)C4—C3—C8—F5177.6 (2)
C8—C3—C4—C50.0 (4)C2—C3—C8—F5−0.8 (4)
C2—C3—C4—C5178.4 (3)C4—C3—C8—C7−0.6 (4)
F1—C4—C5—F2−0.1 (4)C2—C3—C8—C7−179.1 (3)
C3—C4—C5—F2−179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.183.001 (4)160
N1—H1B···N3ii0.862.193.013 (3)161

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2081).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001.
  • Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem.48, 5312–5315. [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc.77, 46–48.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem.35, 29–36.
  • Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect B, 35, 1218–1220.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography