PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2881.
Published online 2010 October 23. doi:  10.1107/S1600536810041711
PMCID: PMC3009108

N,N-Bis(diphenyl­phosphanyl)cyclo­propyl­amine

Abstract

In the title compound, C27H25NP2, the diphenyl­phosphino groups are staggered relative to the PNP backbone. The dihedral angles between the phenyl rings bonded to each P atom are 51.74 (5) and 68.23 (4)°. The coordination around the N atom deviates from trigonal-pyrimidal geometry towards an almost planar arrangement between the N atom and the adjacent P and C atoms; the distance between the N atom and the plane formed by the adjacent C/P/P atoms is 0.098 (2) Å.

Related literature

For similar non-coordinated diphosphineamine ligands with distorted trigonal-pyramidal geometries see: Fei et al. (2003 [triangle]); Keat et al. (1981 [triangle]); Cotton et al. (1996 [triangle]); Cloete et al. (2008 [triangle], 2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2881-scheme1.jpg

Experimental

Crystal data

  • C27H25NP2
  • M r = 425.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2881-efi1.jpg
  • a = 14.460 (4) Å
  • b = 10.486 (5) Å
  • c = 17.053 (5) Å
  • β = 119.358 (5)°
  • V = 2253.6 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 100 K
  • 0.33 × 0.18 × 0.16 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.935, T max = 0.968
  • 33310 measured reflections
  • 5581 independent reflections
  • 4477 reflections with I > 2.0σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.105
  • S = 1.06
  • 5581 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2010 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041711/pv2338sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041711/pv2338Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (NRF), as well as the DST–NRF centre of excellence (c*change) and the University of the Free State are gratefully acknowledged.

supplementary crystallographic information

Comment

This structure forms part of ongoing research on ethylene tetramerization. In the title compound, all bond distances and angles are normal and fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Cloete et al., 2008; 2009; 2010). The distance of N1 from the P1—P2—C1 plane is 0.098 (2) Å showing that the N atom adapts a planar geometry with these atoms in order to accomodate the steric bulk of the phenyl groups. Dihedral angles were calculated based on planes defined by each phenyl ring and the neighboring P atom. The dihedral angles between the various phenyl rings within the molecule are: C1/C2 = 51.74 (5) ° and C3/C4 = 68.23 (4) °. TThe distorted tetrahedral angles of the P atoms range between 100.43 (7) and 105.26 (7) ° which is in good comparison with those in literature. There are no classical intermolecular hydrogen interactions. The title compound is a Cs conformer in the solid state (Keat et al., 1981) in which the phosphorous lone pairs are trans with respect to the N–C bond.

Experimental

Cyclopropylamine (0.010 mol, 693 µl) was dissolved in dichloromethane (30 ml) after which the solution was placed on an ice bath. Triethylamine (0.030 mol, 4.21 ml) was added to the solution while stirring. Chlorodiphenylphosphine (0.020 mol, 3.70 ml) was slowly added to the reaction mixture. The ice bath was removed after 1 h and the reaction mixture was allowed to stir at room temperature for a further 13 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. Single colourless crystals suitable for X-ray crystallography were obtained from recrystallization from methanol. (yield: 1.807 g, 43%)

Refinement

The methine, methylene and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00, 0.99 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.71 Å from C43 and the deepest hole is situated 0.53 Å from P1.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Crystal data

C27H25NP2F(000) = 896
Mr = 425.42Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 8432 reflections
a = 14.460 (4) Åθ = 2.5–27.5°
b = 10.486 (5) ŵ = 0.21 mm1
c = 17.053 (5) ÅT = 100 K
β = 119.358 (5)°Cuboid, colourless
V = 2253.6 (15) Å30.33 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer5581 independent reflections
Radiation source: fine-focus sealed tube4477 reflections with I > 2.0σ(I)
graphiteRint = 0.041
ω and [var phi] scansθmax = 28.4°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −18→19
Tmin = 0.935, Tmax = 0.968k = −10→13
33310 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0466P)2 + 1.0215P] where P = (Fo2 + 2Fc2)/3
5581 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1407 frames were collected with a frame width of 0.5° covering up to θ = 28.36° with 99.3% completeness accomplished. Spectroscopy data: 1H NMR (300 MHz, CD2Cl2): δ = 0.3 to 0.7 (m, 4H, 2 x CH2), 2.6 (m, 1H, CH), 7.3 to 7.5 (m, 20H, Ar); 31P NMR (121 MHz, CD2Cl2): δ = 63.4 (s).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.59558 (12)0.25225 (15)0.55966 (10)0.0209 (3)
H10.54730.19950.57290.025*
C20.54277 (14)0.32353 (16)0.47190 (11)0.0267 (4)
H2A0.46540.31210.43270.032*
H2B0.58330.33540.43960.032*
C30.58012 (14)0.39375 (16)0.55920 (11)0.0274 (4)
H3A0.64360.44880.58040.033*
H3B0.52560.42550.57350.033*
C110.71357 (12)0.07960 (14)0.74371 (10)0.0184 (3)
C120.63529 (12)−0.00544 (14)0.68578 (11)0.0211 (3)
H120.6151−0.00620.62370.025*
C130.58661 (13)−0.08882 (16)0.71768 (11)0.0248 (3)
H130.5327−0.1450.67730.03*
C140.61675 (14)−0.08999 (16)0.80836 (12)0.0258 (4)
H140.5834−0.14670.83030.031*
C150.69601 (13)−0.00792 (15)0.86719 (11)0.0245 (3)
H150.7173−0.00930.92950.029*
C160.74413 (13)0.07601 (15)0.83527 (11)0.0213 (3)
H160.79840.13160.8760.026*
C210.77084 (12)0.33887 (14)0.75153 (10)0.0180 (3)
C220.68675 (13)0.37085 (15)0.76614 (10)0.0205 (3)
H220.6350.30840.75760.025*
C230.67822 (14)0.49346 (15)0.79308 (11)0.0251 (3)
H230.62030.51450.80220.03*
C240.75390 (14)0.58542 (16)0.80678 (11)0.0258 (4)
H240.74710.66940.82420.031*
C250.83918 (14)0.55410 (15)0.79498 (11)0.0241 (3)
H250.89210.6160.80570.029*
C260.84747 (13)0.43169 (15)0.76732 (10)0.0207 (3)
H260.90610.41090.75910.025*
C310.76517 (12)−0.03248 (14)0.55113 (10)0.0182 (3)
C320.68867 (13)−0.12527 (15)0.50250 (11)0.0222 (3)
H320.6234−0.10060.45190.027*
C330.70678 (14)−0.25267 (15)0.52714 (11)0.0262 (4)
H330.654−0.31470.49380.031*
C340.80162 (14)−0.28923 (15)0.60026 (12)0.0272 (4)
H340.8142−0.37660.61680.033*
C350.87866 (14)−0.19906 (15)0.64963 (12)0.0269 (4)
H350.9436−0.22450.70020.032*
C360.86059 (13)−0.07105 (15)0.62481 (11)0.0223 (3)
H360.9137−0.00950.65830.027*
C410.85308 (12)0.20398 (14)0.53650 (10)0.0173 (3)
C420.91036 (12)0.14796 (15)0.49881 (10)0.0201 (3)
H420.88890.06750.46990.024*
C430.99796 (13)0.20875 (16)0.50336 (11)0.0239 (3)
H431.03580.16990.47720.029*
C441.03073 (13)0.32609 (16)0.54587 (12)0.0267 (4)
H441.09110.36720.54920.032*
C450.97516 (14)0.38290 (15)0.58346 (12)0.0266 (4)
H450.99780.46280.61310.032*
C460.88620 (13)0.32314 (14)0.57785 (11)0.0222 (3)
H460.84740.36380.60240.027*
N10.70166 (10)0.20116 (11)0.59277 (8)0.0171 (3)
P10.78650 (3)0.18492 (4)0.70717 (3)0.01690 (10)
P20.72688 (3)0.13260 (4)0.51349 (3)0.01718 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0195 (7)0.0222 (8)0.0204 (8)0.0035 (6)0.0094 (6)−0.0003 (6)
C20.0286 (9)0.0274 (8)0.0215 (8)0.0078 (7)0.0101 (7)0.0011 (7)
C30.0304 (9)0.0247 (8)0.0227 (8)0.0083 (7)0.0097 (7)0.0006 (7)
C110.0196 (7)0.0158 (7)0.0213 (8)0.0023 (6)0.0112 (6)0.0005 (6)
C120.0254 (8)0.0202 (7)0.0193 (8)−0.0002 (6)0.0124 (7)−0.0017 (6)
C130.0272 (9)0.0216 (8)0.0261 (9)−0.0058 (6)0.0135 (7)−0.0045 (7)
C140.0304 (9)0.0222 (8)0.0306 (9)−0.0029 (7)0.0194 (8)0.0013 (7)
C150.0301 (9)0.0257 (8)0.0203 (8)0.0007 (7)0.0142 (7)0.0019 (6)
C160.0227 (8)0.0202 (7)0.0196 (8)−0.0014 (6)0.0092 (6)−0.0003 (6)
C210.0208 (8)0.0186 (7)0.0134 (7)0.0010 (6)0.0073 (6)0.0002 (6)
C220.0220 (8)0.0209 (7)0.0187 (8)−0.0005 (6)0.0102 (6)−0.0007 (6)
C230.0283 (9)0.0251 (8)0.0244 (8)0.0051 (7)0.0148 (7)−0.0007 (7)
C240.0362 (9)0.0186 (7)0.0209 (8)0.0025 (7)0.0127 (7)−0.0009 (6)
C250.0315 (9)0.0206 (8)0.0186 (8)−0.0048 (7)0.0112 (7)−0.0011 (6)
C260.0227 (8)0.0229 (8)0.0165 (7)−0.0022 (6)0.0097 (6)−0.0011 (6)
C310.0225 (8)0.0173 (7)0.0216 (8)−0.0009 (6)0.0161 (7)−0.0015 (6)
C320.0253 (8)0.0222 (8)0.0232 (8)−0.0029 (6)0.0150 (7)−0.0034 (6)
C330.0365 (10)0.0211 (8)0.0279 (9)−0.0086 (7)0.0210 (8)−0.0066 (7)
C340.0413 (10)0.0162 (7)0.0311 (9)−0.0017 (7)0.0233 (8)0.0003 (7)
C350.0289 (9)0.0238 (8)0.0286 (9)0.0024 (7)0.0146 (7)0.0052 (7)
C360.0226 (8)0.0192 (7)0.0270 (8)−0.0018 (6)0.0136 (7)−0.0008 (6)
C410.0200 (7)0.0178 (7)0.0147 (7)0.0011 (6)0.0088 (6)0.0038 (6)
C420.0241 (8)0.0178 (7)0.0198 (8)0.0027 (6)0.0118 (7)0.0018 (6)
C430.0246 (8)0.0263 (8)0.0264 (8)0.0054 (6)0.0169 (7)0.0078 (7)
C440.0248 (8)0.0280 (8)0.0291 (9)−0.0039 (7)0.0147 (7)0.0077 (7)
C450.0343 (9)0.0196 (8)0.0255 (9)−0.0068 (7)0.0143 (8)0.0001 (6)
C460.0308 (9)0.0178 (7)0.0224 (8)−0.0005 (6)0.0164 (7)0.0010 (6)
N10.0179 (6)0.0186 (6)0.0155 (6)0.0020 (5)0.0088 (5)−0.0004 (5)
P10.0173 (2)0.01718 (19)0.0168 (2)0.00046 (14)0.00886 (16)−0.00058 (14)
P20.0189 (2)0.01685 (19)0.0170 (2)0.00047 (14)0.00976 (16)−0.00097 (14)

Geometric parameters (Å, °)

C1—N11.452 (2)C25—C261.393 (2)
C1—C31.500 (2)C25—H250.95
C1—C21.504 (2)C26—H260.95
C1—H11C31—C361.395 (2)
C2—C31.504 (2)C31—C321.399 (2)
C2—H2A0.99C31—P21.8349 (17)
C2—H2B0.99C32—C331.386 (2)
C3—H3A0.99C32—H320.95
C3—H3B0.99C33—C341.380 (3)
C11—C121.399 (2)C33—H330.95
C11—C161.399 (2)C34—C351.387 (2)
C11—P11.8342 (16)C34—H340.95
C12—C131.390 (2)C35—C361.393 (2)
C12—H120.95C35—H350.95
C13—C141.386 (2)C36—H360.95
C13—H130.95C41—C461.399 (2)
C14—C151.390 (2)C41—C421.402 (2)
C14—H140.95C41—P21.8282 (16)
C15—C161.388 (2)C42—C431.386 (2)
C15—H150.95C42—H420.95
C16—H160.95C43—C441.388 (2)
C21—C221.396 (2)C43—H430.95
C21—C261.398 (2)C44—C451.384 (2)
C21—P11.8433 (17)C44—H440.95
C22—C231.391 (2)C45—C461.391 (2)
C22—H220.95C45—H450.95
C23—C241.390 (2)C46—H460.95
C23—H230.95N1—P21.7208 (13)
C24—C251.383 (2)N1—P11.7301 (14)
C24—H240.95
N1—C1—C3119.55 (14)C26—C25—H25120
N1—C1—C2119.64 (14)C25—C26—C21121.00 (15)
C3—C1—C260.09 (11)C25—C26—H26119.5
N1—C1—H1115.5C21—C26—H26119.5
C3—C1—H1115.5C36—C31—C32118.53 (14)
C2—C1—H1115.5C36—C31—P2125.74 (12)
C1—C2—C359.83 (11)C32—C31—P2115.68 (12)
C1—C2—H2A117.8C33—C32—C31120.89 (16)
C3—C2—H2A117.8C33—C32—H32119.6
C1—C2—H2B117.8C31—C32—H32119.6
C3—C2—H2B117.8C34—C33—C32119.85 (15)
H2A—C2—H2B114.9C34—C33—H33120.1
C1—C3—C260.07 (11)C32—C33—H33120.1
C1—C3—H3A117.8C33—C34—C35120.37 (15)
C2—C3—H3A117.8C33—C34—H34119.8
C1—C3—H3B117.8C35—C34—H34119.8
C2—C3—H3B117.8C34—C35—C36119.81 (16)
H3A—C3—H3B114.9C34—C35—H35120.1
C12—C11—C16118.33 (14)C36—C35—H35120.1
C12—C11—P1123.02 (12)C35—C36—C31120.55 (15)
C16—C11—P1118.40 (12)C35—C36—H36119.7
C13—C12—C11120.96 (15)C31—C36—H36119.7
C13—C12—H12119.5C46—C41—C42118.17 (14)
C11—C12—H12119.5C46—C41—P2122.20 (12)
C14—C13—C12119.98 (15)C42—C41—P2118.81 (12)
C14—C13—H13120C43—C42—C41120.72 (15)
C12—C13—H13120C43—C42—H42119.6
C13—C14—C15119.78 (15)C41—C42—H42119.6
C13—C14—H14120.1C42—C43—C44120.36 (15)
C15—C14—H14120.1C42—C43—H43119.8
C16—C15—C14120.26 (15)C44—C43—H43119.8
C16—C15—H15119.9C45—C44—C43119.75 (15)
C14—C15—H15119.9C45—C44—H44120.1
C15—C16—C11120.65 (15)C43—C44—H44120.1
C15—C16—H16119.7C44—C45—C46120.09 (15)
C11—C16—H16119.7C44—C45—H45120
C22—C21—C26118.40 (14)C46—C45—H45120
C22—C21—P1125.20 (12)C45—C46—C41120.89 (15)
C26—C21—P1116.33 (12)C45—C46—H46119.6
C23—C22—C21120.45 (15)C41—C46—H46119.6
C23—C22—H22119.8C1—N1—P2116.03 (10)
C21—C22—H22119.8C1—N1—P1120.30 (10)
C24—C23—C22120.45 (16)P2—N1—P1122.58 (8)
C24—C23—H23119.8N1—P1—C11103.56 (7)
C22—C23—H23119.8N1—P1—C21102.40 (7)
C25—C24—C23119.71 (15)C11—P1—C21100.43 (7)
C25—C24—H24120.1N1—P2—C41103.54 (7)
C23—C24—H24120.1N1—P2—C31105.26 (7)
C24—C25—C26119.94 (15)C41—P2—C31102.29 (7)
C24—C25—H25120
N1—C1—C2—C3−109.10 (16)C44—C45—C46—C411.6 (2)
N1—C1—C3—C2109.25 (16)C42—C41—C46—C45−1.6 (2)
C16—C11—C12—C132.0 (2)P2—C41—C46—C45−171.14 (12)
P1—C11—C12—C13176.10 (12)C3—C1—N1—P2−111.08 (14)
C11—C12—C13—C14−1.1 (2)C2—C1—N1—P2−40.77 (18)
C12—C13—C14—C15−0.3 (3)C3—C1—N1—P180.49 (16)
C13—C14—C15—C160.7 (3)C2—C1—N1—P1150.80 (12)
C14—C15—C16—C110.2 (2)C1—N1—P1—C1158.57 (13)
C12—C11—C16—C15−1.5 (2)P2—N1—P1—C11−109.08 (9)
P1—C11—C16—C15−175.91 (12)C1—N1—P1—C21−45.54 (13)
C26—C21—C22—C231.9 (2)P2—N1—P1—C21146.81 (9)
P1—C21—C22—C23−174.81 (12)C12—C11—P1—N124.39 (14)
C21—C22—C23—C24−0.7 (2)C16—C11—P1—N1−161.48 (12)
C22—C23—C24—C25−1.1 (2)C12—C11—P1—C21129.99 (13)
C23—C24—C25—C261.6 (2)C16—C11—P1—C21−55.87 (13)
C24—C25—C26—C21−0.3 (2)C22—C21—P1—N179.58 (14)
C22—C21—C26—C25−1.4 (2)C26—C21—P1—N1−97.23 (12)
P1—C21—C26—C25175.60 (12)C22—C21—P1—C11−26.95 (15)
C36—C31—C32—C330.4 (2)C26—C21—P1—C11156.23 (12)
P2—C31—C32—C33−177.16 (12)C1—N1—P2—C41131.82 (11)
C31—C32—C33—C34−0.4 (2)P1—N1—P2—C41−60.04 (10)
C32—C33—C34—C350.5 (3)C1—N1—P2—C31−121.16 (11)
C33—C34—C35—C36−0.6 (3)P1—N1—P2—C3146.98 (10)
C34—C35—C36—C310.6 (2)C46—C41—P2—N1−25.59 (14)
C32—C31—C36—C35−0.5 (2)C42—C41—P2—N1164.95 (12)
P2—C31—C36—C35176.77 (12)C46—C41—P2—C31−134.83 (13)
C46—C41—C42—C430.6 (2)C42—C41—P2—C3155.71 (13)
P2—C41—C42—C43170.51 (12)C36—C31—P2—N1−71.90 (15)
C41—C42—C43—C440.4 (2)C32—C31—P2—N1105.44 (12)
C42—C43—C44—C45−0.4 (2)C36—C31—P2—C4136.03 (15)
C43—C44—C45—C46−0.6 (3)C32—C31—P2—C41−146.64 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2338).

References

  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2010). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51–m52.
  • Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480. [PMC free article] [PubMed]
  • Cloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081. [PMC free article] [PubMed]
  • Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.
  • Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography