PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2784.
Published online 2010 October 9. doi:  10.1107/S1600536810037918
PMCID: PMC3009106

(E)-Ethyl 2-(3-cinnamoyl­thio­ureido)acetate

Abstract

In the title compound, C14H16N2O3S, the phenyl ring and the ethyl 2-(3-formyl­thio­ureido)acetate fragment adopt an E configuration with respect to the C=C bond. An intra­molecular N—H(...)O hydrogen bond generating an S(6) ring motif is observed. In the crystal, mol­ecules are linked by N—H(...)S, C—H(...)S and C—H(...)O hydrogen bonds, forming sheets lying parallel to the ab plane.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Yamin & Hassan (2004 [triangle]); Hassan et al. (2008a [triangle],b [triangle],c [triangle], 2009 [triangle]); Hung et al. (2010 [triangle]). For the synthesis, see: Hassan et al. (2008a [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2784-scheme1.jpg

Experimental

Crystal data

  • C14H16N2O3S
  • M r = 292.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2784-efi1.jpg
  • a = 5.1867 (9) Å
  • b = 9.7417 (16) Å
  • c = 29.154 (5) Å
  • V = 1473.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 298 K
  • 0.49 × 0.38 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.897, T max = 0.947
  • 10938 measured reflections
  • 3637 independent reflections
  • 2747 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.164
  • S = 1.03
  • 3637 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1497 Friedel pairs
  • Flack parameter: −0.04 (13)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037918/ci5178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037918/ci5178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010) and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009. The authors also thank Dr J.-C. Daran, CNRS, Tolouse, for his advice.

supplementary crystallographic information

Comment

The title compound, I, is an ethyl ester derivative of glycine thiourea analogoue to our previously reported molecules, ethyl-2-(3- benzoylthioureido)acetate (II) (Hassan et al., 2008a). As in most carbonylthiourea derivatives of the type R1C(O)NHC(S)NHR2, such as in methyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2009), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004), the molecule maintains its E—Z configuration with respect to the positions of the cinnamoyl and ethyl acetate groups, respectively, relative to the S atom across the C10—N2 bond (Fig 1). Bond lengths and angles in the molecule are in normal ranges (Allen et al., 1987) and comparable to those observed in (II). However, the C═S bond length [1.675 (3) Å] is slightly longer than that of (II) [1.666 Å]. The cinnamoylthiourea fragment, [S1/O1/N1/N2/C1-C11, A], is essentially planar with a maximum deviation of 0.079 (3) %A, for the atom C1. In the ethyl acetate moeity, [O2/O3/N2/C11-C13, B], the maximum deviation from the mean plane is 0.007 (3) %A for the atom C13. The phenyl ring [C1–C6, C] is inclined to the ethyl acetate mean plane with a dihedral angle of 13.9 (2)° which is larger than that observed in compound (II) [3.6 (1)°]. The additional CH2 group introduced a more steric geometry to the ethyl acetate moiety. The dihedral angle between the fragments A/B is 10.8 (1)°. There is one intramolecular hydrogen bond, N2—H2A···O1 (Table 1) which resulted in a formation of pseudo-six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig 1). The molecular packing is stablized by N1—H1A···S1, C4—H4A···O3 and C8—H8A···S1 intermolecular hydrogen bonds, which form a sheet parallel to the ab plane.

Experimental

The title compound was synthesized according to a previously reported procedure (Hassan et al., 2008a). Single crystals were obtained by slow evaporation of a CH2Cl2 solution at room temperature (yield 71%).

Refinement

H atoms were positioned geometrically [N–H = 0.86 Å and C–H = 0.93–0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level.
Fig. 2.
A packing diagram of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H16N2O3SF(000) = 616
Mr = 292.35Dx = 1.318 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2524 reflections
a = 5.1867 (9) Åθ = 2.2–25.5°
b = 9.7417 (16) ŵ = 0.23 mm1
c = 29.154 (5) ÅT = 298 K
V = 1473.1 (4) Å3Block, colourless
Z = 40.49 × 0.38 × 0.24 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3637 independent reflections
Radiation source: fine-focus sealed tube2747 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scanθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −6→6
Tmin = 0.897, Tmax = 0.947k = −12→13
10938 measured reflectionsl = −32→38

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.164w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.036
3637 reflectionsΔρmax = 0.35 e Å3
182 parametersΔρmin = −0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1497 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.18635 (18)0.08578 (8)0.03548 (2)0.0573 (2)
O10.3380 (5)0.2635 (3)0.14456 (7)0.0694 (7)
O20.0044 (6)−0.0041 (3)0.20692 (9)0.0952 (10)
O3−0.3348 (5)−0.1415 (2)0.19707 (7)0.0712 (7)
N10.1857 (5)0.2377 (2)0.07184 (7)0.0446 (5)
H1A0.20470.26550.04400.053*
N2−0.0312 (5)0.0950 (2)0.12136 (8)0.0494 (6)
H2A0.06900.12850.14200.059*
C10.9341 (6)0.5968 (3)0.05420 (11)0.0540 (7)
H1B0.83790.55580.03100.065*
C21.1166 (7)0.6944 (3)0.04298 (12)0.0630 (9)
H2B1.14260.71820.01240.076*
C31.2592 (6)0.7563 (3)0.07652 (12)0.0635 (9)
H3A1.37880.82360.06890.076*
C41.2251 (7)0.7186 (3)0.12129 (13)0.0661 (9)
H4A1.32490.75930.14410.079*
C51.0440 (7)0.6208 (3)0.13305 (11)0.0581 (8)
H5A1.02340.59620.16370.070*
C60.8916 (5)0.5586 (3)0.09962 (10)0.0450 (6)
C70.7010 (6)0.4568 (3)0.11298 (10)0.0487 (6)
H7A0.69490.43350.14390.058*
C80.5352 (6)0.3939 (3)0.08554 (10)0.0451 (6)
H8A0.53720.41250.05430.054*
C90.3480 (6)0.2950 (3)0.10411 (9)0.0465 (6)
C10−0.0050 (6)0.1404 (3)0.07938 (10)0.0439 (6)
C11−0.2162 (6)−0.0072 (3)0.13555 (10)0.0514 (7)
H11A−0.2033−0.08690.11580.062*
H11B−0.38920.02970.13280.062*
C12−0.1669 (7)−0.0482 (3)0.18390 (11)0.0604 (8)
C13−0.3116 (12)−0.1938 (5)0.24386 (13)0.1039 (16)
H13A−0.1398−0.22990.24900.125*
H13B−0.3433−0.12100.26580.125*
C14−0.5011 (16)−0.3012 (7)0.24893 (19)0.165 (3)
H14A−0.4645−0.35340.27610.247*
H14B−0.4953−0.36060.22270.247*
H14C−0.6697−0.26120.25140.247*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0656 (5)0.0633 (4)0.0430 (4)−0.0139 (4)−0.0054 (4)−0.0001 (3)
O10.0813 (16)0.0836 (14)0.0431 (11)−0.0360 (15)−0.0067 (11)0.0109 (10)
O20.105 (2)0.113 (2)0.0677 (17)−0.049 (2)−0.0235 (16)0.0243 (17)
O30.0789 (16)0.0854 (15)0.0494 (12)−0.0338 (14)−0.0044 (12)0.0145 (11)
N10.0475 (12)0.0476 (11)0.0386 (11)−0.0068 (12)0.0019 (11)0.0020 (9)
N20.0518 (14)0.0541 (13)0.0422 (12)−0.0123 (12)−0.0024 (10)0.0020 (11)
C10.0510 (17)0.0602 (16)0.0509 (16)−0.0087 (15)−0.0081 (13)0.0023 (14)
C20.063 (2)0.0684 (18)0.0579 (19)−0.0092 (17)0.0024 (15)0.0120 (15)
C30.053 (2)0.0544 (16)0.084 (2)−0.0068 (15)0.0053 (16)−0.0015 (16)
C40.059 (2)0.0655 (19)0.073 (2)−0.0121 (16)−0.0086 (17)−0.0198 (17)
C50.0598 (19)0.0647 (19)0.0497 (17)−0.0059 (17)−0.0031 (14)−0.0092 (14)
C60.0396 (14)0.0439 (14)0.0513 (15)0.0033 (11)−0.0010 (12)−0.0043 (11)
C70.0519 (16)0.0515 (14)0.0427 (14)0.0005 (14)0.0013 (13)0.0001 (11)
C80.0464 (15)0.0455 (14)0.0433 (14)−0.0002 (13)−0.0003 (12)0.0017 (11)
C90.0473 (16)0.0472 (14)0.0449 (14)−0.0019 (13)−0.0044 (12)0.0012 (11)
C100.0431 (16)0.0393 (12)0.0492 (15)0.0014 (12)−0.0004 (12)−0.0028 (11)
C110.0502 (16)0.0538 (15)0.0503 (15)−0.0080 (14)−0.0016 (13)0.0065 (12)
C120.0631 (19)0.0642 (18)0.0538 (17)−0.0143 (18)0.0004 (17)0.0043 (13)
C130.124 (4)0.125 (3)0.062 (2)−0.041 (4)−0.012 (3)0.038 (2)
C140.184 (6)0.229 (8)0.083 (3)−0.108 (6)−0.038 (4)0.083 (4)

Geometric parameters (Å, °)

S1—C101.675 (3)C4—C51.381 (5)
O1—C91.219 (3)C4—H4A0.93
O2—C121.193 (4)C5—C61.393 (4)
O3—C121.316 (4)C5—H5A0.93
O3—C131.462 (4)C6—C71.453 (4)
N1—C91.380 (4)C7—C81.325 (4)
N1—C101.387 (4)C7—H7A0.93
N1—H1A0.86C8—C91.472 (4)
N2—C101.308 (4)C8—H8A0.93
N2—C111.443 (4)C11—C121.487 (4)
N2—H2A0.86C11—H11A0.97
C1—C21.381 (4)C11—H11B0.97
C1—C61.393 (4)C13—C141.443 (7)
C1—H1B0.93C13—H13A0.97
C2—C31.366 (5)C13—H13B0.97
C2—H2B0.93C14—H14A0.96
C3—C41.367 (5)C14—H14B0.96
C3—H3A0.93C14—H14C0.96
C12—O3—C13117.3 (3)C7—C8—H8A119.7
C9—N1—C10127.1 (2)C9—C8—H8A119.7
C9—N1—H1A116.5O1—C9—N1122.2 (3)
C10—N1—H1A116.5O1—C9—C8123.2 (3)
C10—N2—C11124.8 (2)N1—C9—C8114.6 (2)
C10—N2—H2A117.6N2—C10—N1117.0 (2)
C11—N2—H2A117.6N2—C10—S1123.3 (2)
C2—C1—C6121.2 (3)N1—C10—S1119.7 (2)
C2—C1—H1B119.4N2—C11—C12110.0 (3)
C6—C1—H1B119.4N2—C11—H11A109.6
C3—C2—C1120.3 (3)C12—C11—H11A109.6
C3—C2—H2B119.8N2—C11—H11B109.7
C1—C2—H2B119.8C12—C11—H11B109.7
C2—C3—C4119.7 (3)H11A—C11—H11B108.2
C2—C3—H3A120.2O2—C12—O3125.3 (3)
C4—C3—H3A120.2O2—C12—C11124.3 (3)
C3—C4—C5120.6 (3)O3—C12—C11110.4 (3)
C3—C4—H4A119.7C14—C13—O3107.0 (4)
C5—C4—H4A119.7C14—C13—H13A110.3
C4—C5—C6120.8 (3)O3—C13—H13A110.3
C4—C5—H5A119.6C14—C13—H13B110.3
C6—C5—H5A119.6O3—C13—H13B110.3
C5—C6—C1117.3 (3)H13A—C13—H13B108.6
C5—C6—C7119.7 (3)C13—C14—H14A109.5
C1—C6—C7123.0 (3)C13—C14—H14B109.5
C8—C7—C6126.5 (3)H14A—C14—H14B109.5
C8—C7—H7A116.7C13—C14—H14C109.5
C6—C7—H7A116.7H14A—C14—H14C109.5
C7—C8—C9120.6 (3)H14B—C14—H14C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.793.631 (2)166
N2—H2A···O10.861.922.611 (4)137
C4—H4A···O3ii0.932.543.457 (4)170
C8—H8A···S1i0.932.863.716 (3)153

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x+2, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5178).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727. [PMC free article] [PubMed]
  • Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083. [PMC free article] [PubMed]
  • Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167. [PMC free article] [PubMed]
  • Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078. [PMC free article] [PubMed]
  • Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314. [PMC free article] [PubMed]
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography