PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2915.
Published online 2010 October 23. doi:  10.1107/S1600536810041383
PMCID: PMC3009105

Ethyl 4-[(3,5-di-tert-butyl-2-hy­droxy­benzyl­idene)­amino]­benzoate

Abstract

The title compound, a Schiff base, C24H31NO3, has a substituted aromatic ring at both ends of the azomethine linkage and these make a dihedral angle of 24.9 (1)°. There is an intra­molecular hydrogen bond between the hy­droxy group (donor) and the N atom of themazomethine linkage.

Related literature

For the use of the methyl ester analog of the title compound as a second-harmonic generation material, see: Sliwa et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2915-scheme1.jpg

Experimental

Crystal data

  • C24H31NO3
  • M r = 381.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2915-efi1.jpg
  • a = 18.4789 (18) Å
  • b = 10.7194 (11) Å
  • c = 10.7768 (10) Å
  • β = 97.437 (2)°
  • V = 2116.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.30 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • 19941 measured reflections
  • 4855 independent reflections
  • 3123 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.142
  • S = 1.01
  • 4855 reflections
  • 257 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041383/fl2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041383/fl2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The Schiff base, methyl 4-(di-3,5-tert-butyl-2-hydroxybenzylideneamino)benzoate, is a material suitable for second-harmonic generation as it has electron-donating and electron-withdrawing components that are critical for the manifestation of a permanent dipole (Sliwa et al., 2008). Replacing the methyl group with an ethyl moiety leads to (I), an intensely orange-colored compound (Scheme I, Fig. 1) that crystallizes in a centric space group and is, therefore, not suitable as an SHG material. The azomethine bond has an E-configuration; the two aromatic rings are aligned at 24.9 (1) °. The compound is neutral as the hydroxy group bears a hydrogen atom which is a donor in an intra-molecular H bond to the azomethine nitrogen atom (Table 1). There are no important intermolecular contacts; on the other hand, the compound appears to pack in such a way as to accomodate the bulky t-butyl groups as far as possible (Fig. 2).

Experimental

Ethyl 4-aminobenzoate (0.35 g) dissolved in ethanol (5 ml) was added to 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.5 g) dissolved in ethanol (20 ml). Several drops of acetic acid were added. The solution was heated for 3 h. The solvent was evaporated and the product recrystallized from ethanol to yield orange prisms in 80% yield that were suitable for data collection.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2–1.5U eq(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined with the O–H distance restrained to 0.84±0.01 Å; its temperature factor was refined.

In the final difference Fourier map, the largest peak was in the vicinity of an aromatic H-atom.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of the C24H31NO3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Van der Waals packing of two adjacent molecules.

Crystal data

C24H31NO3F(000) = 824
Mr = 381.50Dx = 1.197 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.4789 (18) ÅCell parameters from 2280 reflections
b = 10.7194 (11) Åθ = 2.2–23.8°
c = 10.7768 (10) ŵ = 0.08 mm1
β = 97.437 (2)°T = 100 K
V = 2116.7 (4) Å3Prism, orange
Z = 40.30 × 0.05 × 0.05 mm

Data collection

Bruker SMART APEX diffractometer3123 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
graphiteθmax = 27.5°, θmin = 2.2°
ω scansh = −24→23
19941 measured reflectionsk = −13→13
4855 independent reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0558P)2 + 1.1473P] where P = (Fo2 + 2Fc2)/3
4855 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = −0.25 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.78175 (8)0.89233 (13)0.62825 (14)0.0252 (3)
H10.7466 (13)0.885 (3)0.567 (2)0.086 (12)*
O20.42198 (8)0.93692 (14)0.03223 (14)0.0291 (4)
O30.43875 (7)0.73467 (13)−0.01081 (13)0.0237 (3)
N10.67954 (9)0.79668 (16)0.46645 (16)0.0222 (4)
C10.78970 (11)0.77878 (18)0.68363 (19)0.0203 (4)
C20.84179 (10)0.76051 (18)0.78972 (18)0.0186 (4)
C30.85050 (10)0.63866 (18)0.83515 (18)0.0180 (4)
H30.88620.62430.90540.022*
C40.80999 (10)0.53616 (18)0.78384 (18)0.0183 (4)
C50.75592 (10)0.56031 (19)0.68469 (18)0.0199 (4)
H50.72530.49410.65090.024*
C60.74560 (10)0.67938 (19)0.63368 (18)0.0201 (4)
C70.94204 (12)0.9088 (2)0.7566 (2)0.0290 (5)
H7A0.91370.93590.67800.044*
H7B0.97350.83880.74020.044*
H7C0.97220.97820.79300.044*
C80.88965 (11)0.86740 (19)0.84883 (19)0.0219 (4)
C90.84263 (13)0.9784 (2)0.8811 (2)0.0295 (5)
H9A0.81241.00720.80510.044*
H9B0.87441.04640.91580.044*
H9C0.81120.95210.94280.044*
C100.93590 (13)0.8274 (2)0.9709 (2)0.0304 (5)
H10A0.96700.75690.95420.046*
H10B0.90370.80241.03200.046*
H10C0.96650.89741.00440.046*
C110.82432 (11)0.40232 (18)0.82969 (18)0.0197 (4)
C120.75683 (11)0.3511 (2)0.8825 (2)0.0254 (5)
H12A0.74650.40300.95290.038*
H12B0.76620.26520.91110.038*
H12C0.71480.35260.81690.038*
C130.84080 (12)0.3212 (2)0.7192 (2)0.0259 (5)
H13A0.88380.35400.68580.039*
H13B0.79880.32250.65350.039*
H13C0.85020.23520.74790.039*
C140.88904 (11)0.3930 (2)0.9334 (2)0.0247 (5)
H14A0.93300.42510.90250.037*
H14B0.89660.30560.95830.037*
H14C0.87890.44231.00570.037*
C150.68922 (11)0.69415 (19)0.52586 (19)0.0219 (4)
H150.65890.62500.49950.026*
C160.62487 (10)0.8028 (2)0.36008 (19)0.0213 (4)
C170.59190 (11)0.9167 (2)0.3314 (2)0.0235 (5)
H170.60620.98760.38150.028*
C180.53831 (11)0.9279 (2)0.23032 (19)0.0228 (5)
H180.51571.00640.21160.027*
C190.51707 (10)0.82475 (19)0.15535 (19)0.0202 (4)
C200.55214 (11)0.7112 (2)0.18075 (19)0.0214 (4)
H200.53910.64110.12860.026*
C210.60615 (11)0.7002 (2)0.28224 (19)0.0234 (5)
H210.63050.62280.29900.028*
C220.45526 (11)0.84073 (19)0.05346 (19)0.0209 (4)
C230.37799 (11)0.7442 (2)−0.1100 (2)0.0265 (5)
H23A0.39080.8002−0.17680.032*
H23B0.33470.7788−0.07670.032*
C240.36159 (12)0.6163 (2)−0.1613 (2)0.0281 (5)
H24A0.32060.6204−0.22860.042*
H24B0.34880.5616−0.09450.042*
H24C0.40460.5830−0.19440.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0265 (8)0.0202 (8)0.0271 (8)−0.0029 (6)−0.0030 (7)0.0048 (6)
O20.0308 (8)0.0244 (8)0.0291 (8)0.0063 (7)−0.0075 (7)0.0009 (7)
O30.0216 (7)0.0233 (8)0.0235 (8)0.0036 (6)−0.0069 (6)−0.0009 (6)
N10.0198 (8)0.0244 (9)0.0225 (9)0.0007 (7)0.0031 (7)0.0006 (8)
C10.0218 (10)0.0195 (10)0.0202 (10)0.0052 (8)0.0057 (8)0.0059 (8)
C20.0173 (9)0.0200 (10)0.0187 (10)0.0001 (8)0.0031 (8)0.0001 (8)
C30.0162 (9)0.0229 (10)0.0143 (9)0.0016 (8)−0.0008 (8)0.0021 (8)
C40.0165 (9)0.0206 (10)0.0178 (10)0.0008 (8)0.0023 (8)0.0009 (8)
C50.0173 (9)0.0229 (11)0.0191 (10)−0.0008 (8)0.0011 (8)−0.0032 (8)
C60.0154 (9)0.0273 (11)0.0173 (10)0.0025 (8)0.0004 (8)0.0000 (9)
C70.0294 (12)0.0291 (12)0.0286 (12)−0.0085 (9)0.0037 (10)0.0017 (10)
C80.0252 (10)0.0193 (10)0.0204 (10)−0.0026 (8)0.0000 (8)0.0017 (8)
C90.0393 (13)0.0220 (11)0.0273 (12)−0.0012 (10)0.0047 (10)−0.0015 (9)
C100.0351 (12)0.0253 (12)0.0275 (12)−0.0087 (10)−0.0080 (10)0.0024 (10)
C110.0201 (10)0.0191 (10)0.0192 (10)0.0004 (8)0.0002 (8)−0.0015 (8)
C120.0262 (11)0.0220 (11)0.0280 (12)−0.0025 (9)0.0031 (9)0.0009 (9)
C130.0309 (11)0.0232 (11)0.0232 (11)0.0051 (9)0.0023 (9)−0.0025 (9)
C140.0269 (11)0.0202 (11)0.0254 (11)0.0022 (9)−0.0024 (9)0.0009 (9)
C150.0212 (10)0.0212 (11)0.0235 (11)−0.0011 (8)0.0039 (8)−0.0020 (9)
C160.0170 (9)0.0283 (12)0.0184 (10)0.0001 (8)0.0014 (8)0.0009 (9)
C170.0216 (10)0.0247 (11)0.0238 (11)−0.0014 (9)0.0013 (9)−0.0008 (9)
C180.0226 (10)0.0227 (11)0.0227 (11)0.0021 (8)0.0012 (9)0.0015 (9)
C190.0187 (10)0.0239 (11)0.0174 (10)0.0028 (8)0.0004 (8)0.0021 (8)
C200.0205 (10)0.0228 (11)0.0204 (10)−0.0005 (8)0.0016 (8)0.0003 (9)
C210.0216 (10)0.0241 (11)0.0238 (11)0.0060 (9)0.0004 (8)0.0039 (9)
C220.0194 (10)0.0232 (11)0.0198 (10)0.0001 (8)0.0012 (8)0.0020 (9)
C230.0240 (11)0.0295 (12)0.0231 (11)0.0018 (9)−0.0082 (9)0.0016 (9)
C240.0261 (11)0.0306 (12)0.0271 (12)−0.0001 (10)0.0012 (9)−0.0006 (10)

Geometric parameters (Å, °)

O1—C11.355 (2)C11—C141.531 (3)
O1—H10.866 (10)C11—C131.537 (3)
O2—C221.207 (2)C11—C121.537 (3)
O3—C221.346 (2)C12—H12A0.9800
O3—C231.450 (2)C12—H12B0.9800
N1—C151.273 (3)C12—H12C0.9800
N1—C161.428 (3)C13—H13A0.9800
C1—C61.406 (3)C13—H13B0.9800
C1—C21.410 (3)C13—H13C0.9800
C2—C31.397 (3)C14—H14A0.9800
C2—C81.535 (3)C14—H14B0.9800
C3—C41.402 (3)C14—H14C0.9800
C3—H30.9500C15—H150.9500
C4—C51.389 (3)C16—C171.381 (3)
C4—C111.529 (3)C16—C211.399 (3)
C5—C61.393 (3)C17—C181.379 (3)
C5—H50.9500C17—H170.9500
C6—C151.465 (3)C18—C191.395 (3)
C7—C81.540 (3)C18—H180.9500
C7—H7A0.9800C19—C201.389 (3)
C7—H7B0.9800C19—C221.488 (3)
C7—H7C0.9800C20—C211.387 (3)
C8—C101.534 (3)C20—H200.9500
C8—C91.539 (3)C21—H210.9500
C9—H9A0.9800C23—C241.494 (3)
C9—H9B0.9800C23—H23A0.9900
C9—H9C0.9800C23—H23B0.9900
C10—H10A0.9800C24—H24A0.9800
C10—H10B0.9800C24—H24B0.9800
C10—H10C0.9800C24—H24C0.9800
C1—O1—H1106 (2)H12A—C12—H12B109.5
C22—O3—C23114.99 (16)C11—C12—H12C109.5
C15—N1—C16118.83 (18)H12A—C12—H12C109.5
O1—C1—C6119.20 (18)H12B—C12—H12C109.5
O1—C1—C2120.37 (18)C11—C13—H13A109.5
C6—C1—C2120.43 (18)C11—C13—H13B109.5
C3—C2—C1116.73 (18)H13A—C13—H13B109.5
C3—C2—C8121.24 (17)C11—C13—H13C109.5
C1—C2—C8121.96 (18)H13A—C13—H13C109.5
C2—C3—C4124.26 (18)H13B—C13—H13C109.5
C2—C3—H3117.9C11—C14—H14A109.5
C4—C3—H3117.9C11—C14—H14B109.5
C5—C4—C3116.83 (18)H14A—C14—H14B109.5
C5—C4—C11120.03 (17)C11—C14—H14C109.5
C3—C4—C11123.12 (17)H14A—C14—H14C109.5
C4—C5—C6121.49 (19)H14B—C14—H14C109.5
C4—C5—H5119.3N1—C15—C6122.09 (19)
C6—C5—H5119.3N1—C15—H15119.0
C5—C6—C1120.03 (18)C6—C15—H15119.0
C5—C6—C15117.32 (18)C17—C16—C21119.51 (19)
C1—C6—C15122.63 (19)C17—C16—N1117.79 (19)
C8—C7—H7A109.5C21—C16—N1122.64 (19)
C8—C7—H7B109.5C18—C17—C16120.3 (2)
H7A—C7—H7B109.5C18—C17—H17119.8
C8—C7—H7C109.5C16—C17—H17119.8
H7A—C7—H7C109.5C17—C18—C19120.5 (2)
H7B—C7—H7C109.5C17—C18—H18119.7
C10—C8—C2112.00 (17)C19—C18—H18119.7
C10—C8—C7107.87 (18)C20—C19—C18119.40 (18)
C2—C8—C7108.92 (17)C20—C19—C22122.69 (19)
C10—C8—C9106.89 (17)C18—C19—C22117.87 (18)
C2—C8—C9111.03 (17)C21—C20—C19120.0 (2)
C7—C8—C9110.07 (18)C21—C20—H20120.0
C8—C9—H9A109.5C19—C20—H20120.0
C8—C9—H9B109.5C20—C21—C16120.18 (19)
H9A—C9—H9B109.5C20—C21—H21119.9
C8—C9—H9C109.5C16—C21—H21119.9
H9A—C9—H9C109.5O2—C22—O3123.23 (18)
H9B—C9—H9C109.5O2—C22—C19124.17 (19)
C8—C10—H10A109.5O3—C22—C19112.57 (17)
C8—C10—H10B109.5O3—C23—C24107.99 (17)
H10A—C10—H10B109.5O3—C23—H23A110.1
C8—C10—H10C109.5C24—C23—H23A110.1
H10A—C10—H10C109.5O3—C23—H23B110.1
H10B—C10—H10C109.5C24—C23—H23B110.1
C4—C11—C14112.55 (16)H23A—C23—H23B108.4
C4—C11—C13108.92 (16)C23—C24—H24A109.5
C14—C11—C13108.30 (16)C23—C24—H24B109.5
C4—C11—C12109.85 (16)H24A—C24—H24B109.5
C14—C11—C12107.53 (17)C23—C24—H24C109.5
C13—C11—C12109.64 (17)H24A—C24—H24C109.5
C11—C12—H12A109.5H24B—C24—H24C109.5
C11—C12—H12B109.5
O1—C1—C2—C3−175.11 (17)C3—C4—C11—C13−122.2 (2)
C6—C1—C2—C34.6 (3)C5—C4—C11—C12−64.1 (2)
O1—C1—C2—C81.8 (3)C3—C4—C11—C12117.6 (2)
C6—C1—C2—C8−178.52 (18)C16—N1—C15—C6178.21 (17)
C1—C2—C3—C4−1.5 (3)C5—C6—C15—N1−174.29 (19)
C8—C2—C3—C4−178.36 (18)C1—C6—C15—N14.0 (3)
C2—C3—C4—C5−2.7 (3)C15—N1—C16—C17151.3 (2)
C2—C3—C4—C11175.58 (19)C15—N1—C16—C21−31.4 (3)
C3—C4—C5—C63.9 (3)C21—C16—C17—C183.2 (3)
C11—C4—C5—C6−174.44 (18)N1—C16—C17—C18−179.46 (18)
C4—C5—C6—C1−0.9 (3)C16—C17—C18—C19−0.4 (3)
C4—C5—C6—C15177.43 (18)C17—C18—C19—C20−2.2 (3)
O1—C1—C6—C5176.18 (18)C17—C18—C19—C22175.61 (19)
C2—C1—C6—C5−3.5 (3)C18—C19—C20—C212.0 (3)
O1—C1—C6—C15−2.1 (3)C22—C19—C20—C21−175.68 (18)
C2—C1—C6—C15178.18 (18)C19—C20—C21—C160.8 (3)
C3—C2—C8—C10−9.4 (3)C17—C16—C21—C20−3.4 (3)
C1—C2—C8—C10173.86 (19)N1—C16—C21—C20179.43 (18)
C3—C2—C8—C7109.8 (2)C23—O3—C22—O20.8 (3)
C1—C2—C8—C7−66.9 (2)C23—O3—C22—C19178.95 (17)
C3—C2—C8—C9−128.8 (2)C20—C19—C22—O2177.1 (2)
C1—C2—C8—C954.5 (2)C18—C19—C22—O2−0.6 (3)
C5—C4—C11—C14176.14 (18)C20—C19—C22—O3−1.0 (3)
C3—C4—C11—C14−2.1 (3)C18—C19—C22—O3−178.74 (18)
C5—C4—C11—C1356.0 (2)C22—O3—C23—C24−173.52 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (1)1.80 (2)2.609 (2)154 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2320).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sliwa, M., Spangenberg, A., Metivier, R., Letard, S., Nakatani, K. & Yu, P. (2008). Res. Chem. Intermed.34, 181–190.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography