PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2779.
Published online 2010 October 9. doi:  10.1107/S1600536810038894
PMCID: PMC3009104

2,2,2-Trifluoro­ethyl 4-methyl­benzene­sulfonate

Abstract

In the crystal structure of the title compound, C9H9F3O3S, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules along the c-axis direction. Also present are slipped π–π stacking inter­actions between phenyl­ene rings, with perpendicular inter­planar distances of 3.55 (2) Å and centroid–centroid distances of 3.851 (2) Å.

Related literature

The title compound is a reactive electrophile and a useful inter­mediate in organic synthesis. For general background and the synthesis, see: Gøgsig et al. (2008 [triangle]). For a similar structure, see: Asano et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2779-scheme1.jpg

Experimental

Crystal data

  • C9H9F3O3S
  • M r = 254.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2779-efi1.jpg
  • a = 8.3760 (17) Å
  • b = 11.827 (2) Å
  • c = 11.145 (2) Å
  • β = 94.54 (3)°
  • V = 1100.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 293 K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.909, T max = 0.968
  • 2149 measured reflections
  • 2005 independent reflections
  • 1355 reflections with I > 2σ(I)
  • R int = 0.012
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.172
  • S = 1.00
  • 2005 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038894/zl2306sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038894/zl2306Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Electrophilic reagents play an important role in the synthesis of organic compounds and are often used in the synthesis of organic intermediates. (Asano et al. 2009). The title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate, is a electrophilic vinylation reagent commonly used for the synthesis of compounds such as vinyl styrenes that in turn find use as valuable intermediates in the synthesis of fine chemicals and as precursors to functionalized polymers (Gøgsig et al., 2008).

We report here in the crystal structure of the title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate. In the molecule of the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges. An intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring (C4/C5/S/O3/H4A). In the crystal structure, the weak intermolecular C8-H8···O1 hydrogen bond connects the molecules along the direction of the c axis (Fig. 2). Also present are slipped π-π stacking interactions between phenylene rings with perpendicular interplanar distances of 3.55 (2) Å and centroid to centroid distances of 3.851 (2) Å (symmetry operator for the second molecule: -x, 2-y, -z).

Experimental

The title compound, 2,2,2-trifluoroethyl 4-methylbenzenesulfonate was prepared on a literature procedure (Gøgsig et al., 2008). 2,2,2-Trifluoroethanol (19.90 mmol) and triethylamine (71.70 mmol) were dissolved in dry dichloromethane (20.0 mL). The solution was cooled to 273K and tosyl chloride (24.9 mmol) was added. The reaction was stirred at 273K for 1 h before being allowed to warm to room temperature. Hereafter the reaction was stirred at room temperature overnight. The organic phase was washed with brine (2 × 50 mL) and dried over sodium sulfate. After concentration in vacuo the crude product was purified by flash cromatography on silica gel using pentane/dichloromethane (4:1) and pentane/dichloromethane (3:1) as the eluents. This afforded of the title compound (96 % yield) as a colorless solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of 2,2,2-trifluoroethyl 4-methylbenzenesulfonate. Dashed lines indicate intermolecular C-H···O interactions.

Crystal data

C9H9F3O3SF(000) = 520
Mr = 254.22Dx = 1.534 Mg m3
Monoclinic, P21/cMelting point: 312 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.3760 (17) ÅCell parameters from 25 reflections
b = 11.827 (2) Åθ = 9–13°
c = 11.145 (2) ŵ = 0.33 mm1
β = 94.54 (3)°T = 293 K
V = 1100.6 (4) Å3Needle, colourless
Z = 40.30 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1355 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
graphiteθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 0→10
Absorption correction: ψ scan (North et al., 1968)k = 0→14
Tmin = 0.909, Tmax = 0.968l = −13→13
2149 measured reflections3 standard reflections every 200 reflections
2005 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2 + 0.350P] where P = (Fo2 + 2Fc2)/3
2005 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.22668 (10)0.81228 (8)0.14051 (7)0.0524 (3)
O10.2130 (3)0.8490 (2)0.2610 (2)0.0726 (8)
O20.2305 (3)0.6787 (2)0.15228 (18)0.0564 (7)
O30.3590 (3)0.8450 (2)0.0778 (2)0.0685 (8)
C1−0.3915 (5)0.8728 (4)−0.1679 (4)0.0878 (14)
H1B−0.36950.8862−0.24990.132*
H1C−0.45310.9345−0.13990.132*
H1D−0.45090.8038−0.16300.132*
C2−0.2361 (5)0.8634 (3)−0.0908 (3)0.0590 (10)
C3−0.0892 (5)0.8731 (3)−0.1392 (3)0.0569 (9)
H3B−0.08700.8893−0.22070.068*
C40.0537 (4)0.8594 (3)−0.0705 (3)0.0511 (8)
H4A0.15090.8650−0.10510.061*
C50.0493 (4)0.8369 (3)0.0522 (3)0.0442 (8)
C6−0.0958 (4)0.8308 (3)0.1034 (3)0.0517 (9)
H6A−0.09810.81780.18560.062*
C7−0.2343 (5)0.8439 (3)0.0336 (3)0.0623 (10)
H7A−0.33100.83990.06900.075*
C80.2628 (5)0.6142 (3)0.0482 (3)0.0662 (11)
H8A0.36790.63330.02340.079*
H8B0.18400.6316−0.01780.079*
C90.2565 (6)0.4960 (4)0.0770 (4)0.0717 (11)
F30.1153 (4)0.4632 (3)0.1101 (3)0.1040 (9)
F20.3549 (4)0.4617 (2)0.1673 (3)0.1064 (10)
F10.2812 (4)0.4335 (3)−0.0197 (3)0.1119 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0482 (5)0.0686 (6)0.0399 (5)0.0007 (4)0.0000 (3)−0.0052 (4)
O10.0794 (19)0.095 (2)0.0415 (14)0.0052 (15)−0.0036 (12)−0.0168 (14)
O20.0625 (16)0.0732 (17)0.0339 (12)0.0100 (12)0.0057 (10)0.0013 (11)
O30.0511 (15)0.0831 (19)0.0722 (17)−0.0068 (13)0.0115 (13)0.0018 (15)
C10.075 (3)0.096 (3)0.087 (3)0.005 (3)−0.027 (2)0.007 (3)
C20.063 (2)0.056 (2)0.055 (2)0.0001 (18)−0.0071 (18)−0.0006 (18)
C30.070 (2)0.070 (2)0.0309 (17)0.0066 (19)0.0043 (16)0.0094 (16)
C40.054 (2)0.061 (2)0.0397 (18)0.0017 (16)0.0090 (15)0.0023 (16)
C50.0430 (18)0.0482 (18)0.0411 (17)0.0026 (14)0.0024 (13)−0.0028 (14)
C60.051 (2)0.063 (2)0.0421 (18)−0.0018 (16)0.0120 (15)0.0010 (16)
C70.052 (2)0.069 (2)0.066 (2)−0.0010 (18)0.0102 (18)0.005 (2)
C80.079 (3)0.070 (3)0.052 (2)0.007 (2)0.0204 (19)−0.0014 (19)
C90.079 (3)0.068 (3)0.067 (3)−0.003 (2)−0.005 (2)−0.004 (2)
F30.096 (2)0.110 (2)0.106 (2)−0.0209 (17)0.0106 (16)0.0062 (17)
F20.106 (2)0.094 (2)0.116 (2)0.0091 (16)−0.0117 (18)0.0086 (17)
F10.132 (3)0.096 (2)0.109 (2)0.0005 (18)0.0163 (19)−0.0149 (17)

Geometric parameters (Å, °)

S—O31.410 (3)C4—C51.397 (4)
S—O11.425 (2)C4—H4A0.9300
S—O21.585 (3)C5—C61.385 (4)
S—C51.740 (3)C6—C71.354 (5)
O2—C81.432 (4)C6—H6A0.9300
C1—C21.506 (5)C7—H7A0.9300
C1—H1B0.9600C8—C91.437 (6)
C1—H1C0.9600C8—H8A0.9700
C1—H1D0.9600C8—H8B0.9700
C2—C31.387 (5)C9—F21.314 (5)
C2—C71.404 (5)C9—F31.325 (5)
C3—C41.379 (5)C9—F11.336 (5)
C3—H3B0.9300
O3—S—O1120.54 (18)C6—C5—C4120.4 (3)
O3—S—O2107.64 (15)C6—C5—S119.7 (2)
O1—S—O2103.21 (15)C4—C5—S119.9 (3)
O3—S—C5110.08 (16)C7—C6—C5119.8 (3)
O1—S—C5110.68 (16)C7—C6—H6A120.1
O2—S—C5102.95 (15)C5—C6—H6A120.1
C8—O2—S117.9 (2)C6—C7—C2121.9 (3)
C2—C1—H1B109.5C6—C7—H7A119.1
C2—C1—H1C109.5C2—C7—H7A119.1
H1B—C1—H1C109.5O2—C8—C9109.0 (3)
C2—C1—H1D109.5O2—C8—H8A109.9
H1B—C1—H1D109.5C9—C8—H8A109.9
H1C—C1—H1D109.5O2—C8—H8B109.9
C3—C2—C7117.2 (3)C9—C8—H8B109.9
C3—C2—C1121.7 (4)H8A—C8—H8B108.3
C7—C2—C1121.1 (4)F2—C9—F3102.5 (4)
C4—C3—C2122.1 (3)F2—C9—F1108.7 (4)
C4—C3—H3B118.9F3—C9—F1105.1 (4)
C2—C3—H3B118.9F2—C9—C8116.1 (4)
C3—C4—C5118.5 (3)F3—C9—C8113.4 (4)
C3—C4—H4A120.7F1—C9—C8110.4 (4)
C5—C4—H4A120.7
O3—S—O2—C8−44.3 (3)O1—S—C5—C4149.6 (3)
O1—S—O2—C8−172.8 (3)O2—S—C5—C4−100.7 (3)
C5—S—O2—C872.0 (3)C4—C5—C6—C71.7 (5)
C7—C2—C3—C42.8 (6)S—C5—C6—C7−176.5 (3)
C1—C2—C3—C4−176.9 (4)C5—C6—C7—C20.2 (6)
C2—C3—C4—C5−1.1 (6)C3—C2—C7—C6−2.4 (6)
C3—C4—C5—C6−1.2 (5)C1—C2—C7—C6177.4 (4)
C3—C4—C5—S176.9 (3)S—O2—C8—C9−178.5 (3)
O3—S—C5—C6−168.1 (3)O2—C8—C9—F2−57.8 (5)
O1—S—C5—C6−32.3 (3)O2—C8—C9—F360.4 (5)
O2—S—C5—C677.4 (3)O2—C8—C9—F1178.0 (3)
O3—S—C5—C413.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.932.592.938 (4)103
C8—H8B···O1i0.972.513.225 (4)131

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2306).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Asano, K. & Matsubara, S. (2009). Org. Lett.11, 1757–1759. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Gøgsig, T. M., Søbjerg, L. S., Lindhardt (neé Hansen), A. T., Jensen, K. L. & Skrydstrup, T. (2008). J. Org. Chem.73, 3404–3410. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography