PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1475.
Published online 2010 October 30. doi:  10.1107/S1600536810042923
PMCID: PMC3009097

[2-({3-[(3-Amino­prop­yl)amino]­prop­yl}imino­meth­yl)phenolato-κ4 O,N,N′′,N′′′]bromidocopper(II)

Abstract

In the title compound, [Cu(C13H20N3O)Br], the Cu(II) atom is coordinated by three N atoms and one O atom from the deprotonated ligand derived from the Schiff base condensation of 3,3-imino­bis­(propyl­amine) and salicyl­aldehyde. The three N and the O atoms occupy equatorial positions, while the Br atom occupies an axial position. The amine H atoms form inter­molecular hydrogen bonds with the Br and O atoms of adjoining mol­ecules

Related literature

For asymmetry parameters, see: Addison et al. (1984 [triangle]). For the preparation of the ligand, see: Pajunen et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1475-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H20N3O)Br]
  • M r = 377.77
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1475-efi1.jpg
  • a = 12.3272 (2) Å
  • b = 11.34425 (19) Å
  • c = 20.5729 (4) Å
  • V = 2876.98 (9) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 5.36 mm−1
  • T = 173 K
  • 0.44 × 0.23 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007 [triangle]); based on Clark & Reid (1995 [triangle])] T min = 0.211, T max = 0.697
  • 8196 measured reflections
  • 3021 independent reflections
  • 2939 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.096
  • S = 1.09
  • 3021 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 1.19 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042923/pb2044sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042923/pb2044Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

The reported structure is related to a previously published structure that contains a mononuclear copper(II) complex of a Schiff base resulting from the condensation of an imidazole-aldehyde with 3,3-iminobispropylamine (Pajunen et al., 2000). In this paper we report the synthesis of a new copper(II) complex containing a phenolato ligand in place of the imidazole. As in the latter case, while the reaction was carried out with an amine:salicylaldehyde ratio of 1:2, the resulting Schiff base ligand was the condensation product of one salicylaldehyde molecule and one amine molecule thus the ligand contains one imino and two amine N's. One difference between the copper complexes of the two ligands is that the copper(II) complex of the imidazole ligand is a cation with methanol as one of the ligands and an uncoordinated perchlorate anion while the title compound contains coordinated Br- and is thus neutral.

In the title compound C13H20BrCuN3O, the Cu is penta-coordinated with the phenolic O and N atoms forming a plane and with an axial bromide anion and the Cu 0.205 (1) Å out of the basal plane. Thus the overall geometry is square pyramidal [τ = 0.045 (Addison et al., 1984)]. The bond distance between Cu(II) and the phenolic O is 1.943 (2) Å which is shorter than the Cu—N distances involving the amine N's, i.e., Cu N1 1.998 (3); Cu N3 2.029 (3); Cu N2 2.061 (3) Å. The apical Cu—Br distance is 2.8555 (5) Å.

The amine protons form intermolecular hydrogen bonds with the Br and O atoms of adjoining molecules.

Experimental

The synthesis of the 3,3'-iminobis(propylamine)salicylaldimine was accomplished by the reaction of a solution of (5 g, 37.34 mmol) 3,3-iminobispropylamine in 20 ml methanol with a solution of (9.13 g, 74.68 mmol) salicylaldehyde in 40 ml methanol. The reaction mixture was refluxed for 24 h and then evaporated under reduced pressure to give a brownish yellow oily liquid.

The complex was synthesized by mixing a solution of 3,3'-iminobis(propylamine)salicylaldehyde (0.25 g, 0.74 mmol) in 10 ml methanol to a solution of (0.21 g, 1.48 mmol) CuBr in 10 ml methanol. The mixture was stirred for 24 h at room temperature. At the end of the reaction, the reaction mixture was evaporated under reduced pressure to afford greenish solids. The solids were dissolved in DMF and filtered. The filtrate solution of the complex was layered with diethyl ether for slow solvent diffusion crystallization method. Crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.97 Å [Uiso(H) = 1.2Ueq(C)]. The H atoms attached to N were idealized with an primary and secondary N–H distances of 0.90 and 0.91 Å, respectively.

Figures

Fig. 1.
A view of the title compound, C13H20BrCuN3O, showing atom numbering scheme.
Fig. 2.
The molecular packing for C13H20BrCuN3O, viewed down the c axis showing the intermolecular N—H···O and N—H···Br interactions as dashed lines.

Crystal data

[Cu(C13H20N3O)Br]F(000) = 1528
Mr = 377.77Dx = 1.744 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 6661 reflections
a = 12.3272 (2) Åθ = 4.2–77.1°
b = 11.34425 (19) ŵ = 5.36 mm1
c = 20.5729 (4) ÅT = 173 K
V = 2876.98 (9) Å3Plate, blue
Z = 80.44 × 0.23 × 0.07 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer3021 independent reflections
Radiation source: fine-focus sealed tube2939 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 77.5°, θmin = 5.7°
ω scansh = −14→15
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007); based on expressions derived by Clark & Reid (1995)]k = −14→8
Tmin = 0.211, Tmax = 0.697l = −25→15
8196 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0427P)2 + 9.8873P] where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = −0.77 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid. [Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897]
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.32735 (4)0.48683 (4)0.57075 (2)0.01378 (13)
Br0.39440 (3)0.72635 (3)0.556355 (16)0.02033 (12)
O10.46552 (18)0.4169 (2)0.59480 (10)0.0186 (4)
N10.2822 (2)0.4932 (2)0.66398 (12)0.0161 (5)
N20.1756 (2)0.5198 (3)0.53280 (14)0.0229 (6)
H2B0.14100.44900.53050.027*
N30.3774 (2)0.4431 (2)0.47993 (12)0.0171 (5)
H3B0.40190.50890.46040.021*
H3C0.43390.39340.48360.021*
C10.4937 (2)0.3662 (3)0.64894 (14)0.0149 (6)
C20.5933 (3)0.3039 (3)0.65136 (15)0.0173 (6)
H2A0.63670.30000.61440.021*
C30.6269 (3)0.2487 (3)0.70795 (17)0.0202 (6)
H3A0.69270.20870.70840.024*
C40.5638 (3)0.2521 (3)0.76433 (15)0.0224 (7)
H4A0.58660.21420.80200.027*
C50.4670 (3)0.3130 (3)0.76273 (15)0.0204 (6)
H5A0.42450.31590.80010.025*
C60.4306 (3)0.3708 (3)0.70627 (15)0.0166 (6)
C70.3314 (3)0.4381 (3)0.71007 (15)0.0181 (6)
H7A0.29900.44210.75080.022*
C80.1888 (3)0.5655 (3)0.68384 (17)0.0251 (7)
H8A0.20990.64790.68330.030*
H8B0.16910.54530.72810.030*
C90.0905 (3)0.5495 (3)0.64062 (16)0.0197 (6)
H9A0.07380.46610.63760.024*
H9B0.02880.58840.66060.024*
C100.1058 (3)0.5980 (3)0.57295 (18)0.0276 (8)
H10A0.03550.60640.55220.033*
H10B0.13860.67550.57560.033*
C110.1810 (3)0.5657 (3)0.46581 (17)0.0253 (7)
H11A0.23390.62900.46440.030*
H11B0.11100.59910.45460.030*
C120.2108 (3)0.4752 (3)0.41555 (16)0.0227 (7)
H12A0.23650.51560.37700.027*
H12B0.14600.43180.40360.027*
C130.2965 (3)0.3883 (3)0.43705 (15)0.0213 (6)
H13A0.26210.32350.45980.026*
H13B0.33280.35650.39910.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0140 (2)0.0144 (2)0.0130 (2)0.00279 (16)−0.00072 (16)0.00046 (15)
Br0.0271 (2)0.01531 (18)0.01858 (18)0.00442 (12)−0.00268 (12)−0.00103 (11)
O10.0161 (10)0.0234 (11)0.0162 (10)0.0068 (9)0.0011 (8)0.0063 (8)
N10.0150 (12)0.0182 (12)0.0151 (12)0.0019 (10)0.0023 (10)−0.0021 (9)
N20.0202 (14)0.0256 (14)0.0228 (14)0.0046 (11)−0.0023 (11)0.0012 (11)
N30.0168 (12)0.0193 (13)0.0151 (12)0.0006 (10)−0.0021 (10)0.0015 (10)
C10.0166 (14)0.0123 (13)0.0159 (13)−0.0015 (11)−0.0025 (11)0.0003 (10)
C20.0187 (15)0.0150 (14)0.0183 (14)0.0009 (12)−0.0012 (11)0.0004 (12)
C30.0204 (15)0.0158 (13)0.0243 (16)0.0038 (12)−0.0088 (13)−0.0003 (12)
C40.0300 (18)0.0215 (14)0.0155 (15)0.0035 (14)−0.0086 (13)0.0015 (12)
C50.0265 (16)0.0212 (15)0.0135 (14)−0.0010 (13)−0.0008 (12)−0.0014 (11)
C60.0166 (14)0.0163 (14)0.0168 (13)−0.0021 (11)−0.0032 (11)−0.0020 (11)
C70.0194 (15)0.0215 (15)0.0135 (13)−0.0010 (12)0.0027 (11)−0.0025 (11)
C80.0217 (16)0.0308 (17)0.0228 (16)0.0092 (14)−0.0010 (13)−0.0071 (14)
C90.0148 (14)0.0206 (15)0.0238 (15)0.0016 (12)0.0020 (12)−0.0021 (12)
C100.0206 (17)0.0331 (19)0.0292 (18)0.0112 (14)0.0036 (13)0.0079 (15)
C110.0262 (17)0.0233 (16)0.0262 (17)0.0038 (14)−0.0072 (14)0.0013 (14)
C120.0211 (16)0.0259 (17)0.0211 (15)−0.0044 (13)−0.0072 (13)0.0032 (13)
C130.0214 (15)0.0247 (16)0.0180 (14)−0.0010 (13)0.0007 (12)−0.0054 (12)

Geometric parameters (Å, °)

Cu—O11.943 (2)C4—H4A0.9300
Cu—N11.998 (3)C5—C61.407 (4)
Cu—N32.029 (3)C5—H5A0.9300
Cu—N22.061 (3)C6—C71.444 (4)
Cu—Br2.8555 (5)C7—H7A0.9300
O1—C11.301 (4)C8—C91.514 (5)
N1—C71.288 (4)C8—H8A0.9700
N1—C81.472 (4)C8—H8B0.9700
N2—C111.475 (4)C9—C101.508 (5)
N2—C101.487 (4)C9—H9A0.9700
N2—H2B0.9100C9—H9B0.9700
N3—C131.469 (4)C10—H10A0.9700
N3—H3B0.9000C10—H10B0.9700
N3—H3C0.9000C11—C121.503 (5)
C1—C61.414 (4)C11—H11A0.9700
C1—C21.418 (4)C11—H11B0.9700
C2—C31.385 (4)C12—C131.511 (5)
C2—H2A0.9300C12—H12A0.9700
C3—C41.397 (5)C12—H12B0.9700
C3—H3A0.9300C13—H13A0.9700
C4—C51.379 (5)C13—H13B0.9700
O1—Cu—N190.84 (10)C5—C6—C7118.1 (3)
O1—Cu—N382.43 (10)C1—C6—C7122.0 (3)
N1—Cu—N3167.76 (11)N1—C7—C6128.0 (3)
O1—Cu—N2165.04 (11)N1—C7—H7A116.0
N1—Cu—N295.97 (11)C6—C7—H7A116.0
N3—Cu—N288.36 (11)N1—C8—C9113.4 (3)
O1—Cu—Br99.26 (7)N1—C8—H8A108.9
N1—Cu—Br98.38 (8)C9—C8—H8A108.9
N3—Cu—Br92.81 (8)N1—C8—H8B108.9
N2—Cu—Br92.92 (8)C9—C8—H8B108.9
C1—O1—Cu129.3 (2)H8A—C8—H8B107.7
C7—N1—C8115.8 (3)C10—C9—C8113.5 (3)
C7—N1—Cu123.9 (2)C10—C9—H9A108.9
C8—N1—Cu120.3 (2)C8—C9—H9A108.9
C11—N2—C10109.5 (3)C10—C9—H9B108.9
C11—N2—Cu112.1 (2)C8—C9—H9B108.9
C10—N2—Cu115.0 (2)H9A—C9—H9B107.7
C11—N2—H2B106.5N2—C10—C9111.6 (3)
C10—N2—H2B106.5N2—C10—H10A109.3
Cu—N2—H2B106.5C9—C10—H10A109.3
C13—N3—Cu116.8 (2)N2—C10—H10B109.3
C13—N3—H3B108.1C9—C10—H10B109.3
Cu—N3—H3B108.1H10A—C10—H10B108.0
C13—N3—H3C108.1N2—C11—C12114.3 (3)
Cu—N3—H3C108.1N2—C11—H11A108.7
H3B—N3—H3C107.3C12—C11—H11A108.7
O1—C1—C6123.4 (3)N2—C11—H11B108.7
O1—C1—C2118.8 (3)C12—C11—H11B108.7
C6—C1—C2117.7 (3)H11A—C11—H11B107.6
C3—C2—C1120.9 (3)C11—C12—C13114.5 (3)
C3—C2—H2A119.6C11—C12—H12A108.6
C1—C2—H2A119.6C13—C12—H12A108.6
C2—C3—C4121.3 (3)C11—C12—H12B108.6
C2—C3—H3A119.3C13—C12—H12B108.6
C4—C3—H3A119.3H12A—C12—H12B107.6
C5—C4—C3118.4 (3)N3—C13—C12112.0 (3)
C5—C4—H4A120.8N3—C13—H13A109.2
C3—C4—H4A120.8C12—C13—H13A109.2
C4—C5—C6121.9 (3)N3—C13—H13B109.2
C4—C5—H5A119.0C12—C13—H13B109.2
C6—C5—H5A119.0H13A—C13—H13B107.9
C5—C6—C1119.8 (3)
N1—Cu—O1—C117.0 (3)O1—C1—C2—C3179.8 (3)
N3—Cu—O1—C1−152.8 (3)C6—C1—C2—C30.5 (4)
N2—Cu—O1—C1−100.3 (5)C1—C2—C3—C40.3 (5)
Br—Cu—O1—C1115.6 (2)C2—C3—C4—C5−0.6 (5)
O1—Cu—N1—C7−13.5 (3)C3—C4—C5—C60.2 (5)
N3—Cu—N1—C742.8 (6)C4—C5—C6—C10.6 (5)
N2—Cu—N1—C7153.1 (3)C4—C5—C6—C7−176.5 (3)
Br—Cu—N1—C7−113.0 (3)O1—C1—C6—C5179.8 (3)
O1—Cu—N1—C8165.4 (2)C2—C1—C6—C5−0.9 (4)
N3—Cu—N1—C8−138.2 (5)O1—C1—C6—C7−3.3 (5)
N2—Cu—N1—C8−27.9 (3)C2—C1—C6—C7176.0 (3)
Br—Cu—N1—C865.9 (2)C8—N1—C7—C6−173.4 (3)
O1—Cu—N2—C11−84.8 (5)Cu—N1—C7—C65.6 (5)
N1—Cu—N2—C11158.5 (2)C5—C6—C7—N1−177.0 (3)
N3—Cu—N2—C11−33.0 (2)C1—C6—C7—N16.0 (5)
Br—Cu—N2—C1159.8 (2)C7—N1—C8—C9−134.5 (3)
O1—Cu—N2—C10149.1 (4)Cu—N1—C8—C946.5 (4)
N1—Cu—N2—C1032.5 (3)N1—C8—C9—C10−68.5 (4)
N3—Cu—N2—C10−159.0 (2)C11—N2—C10—C9175.5 (3)
Br—Cu—N2—C10−66.3 (2)Cu—N2—C10—C9−57.1 (4)
O1—Cu—N3—C13135.8 (2)C8—C9—C10—N275.6 (4)
N1—Cu—N3—C1378.7 (6)C10—N2—C11—C12−157.6 (3)
N2—Cu—N3—C13−32.4 (2)Cu—N2—C11—C1273.4 (3)
Br—Cu—N3—C13−125.2 (2)N2—C11—C12—C13−39.1 (4)
Cu—O1—C1—C6−11.3 (4)Cu—N3—C13—C1270.9 (3)
Cu—O1—C1—C2169.3 (2)C11—C12—C13—N3−34.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···Bri0.912.623.472 (3)157
N3—H3B···O1ii0.902.162.938 (3)144
N3—H3C···Brii0.902.653.488 (3)156

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2044).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Pajunen, A., Cámara, F., Dominques-Vera, J. M. & Colacio, E. (2000). Acta Cryst. C56, e49–e50.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography