PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3024.
Published online 2010 October 31. doi:  10.1107/S1600536810042522
PMCID: PMC3009095

5-Chloro­indoline-2,3-dione

Abstract

The title compound, C8H4ClNO2, is almost planar (r.m.s. deviation for the non-H atoms = 0.023 Å). In the crystal, N—H(...)O hydrogen bonds link the mol­ecules into C(4) chains propagating in [001] and C—H(...)O inter­actions cross-link the chains.

Related literature

For further synthetic details, see: Silva et al. (2001 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3024-scheme1.jpg

Experimental

Crystal data

  • C8H4ClNO2
  • M r = 181.57
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3024-efi1.jpg
  • a = 24.706 (5) Å
  • b = 5.6890 (11) Å
  • c = 5.209 (1) Å
  • V = 732.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 293 K
  • 0.10 × 0.05 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.955, T max = 0.977
  • 1746 measured reflections
  • 884 independent reflections
  • 734 reflections with I > 2σ(I)
  • R int = 0.048
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.00
  • 884 reflections
  • 109 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 862 Friedel pairs
  • Flack parameter: 0.11 (16)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042522/hb5688sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042522/hb5688Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis of the Nanjing University for the support.

supplementary crystallographic information

Comment

5-Chloroindoline-2,3-dione is an important pharmaceutical intermediate for synthesizing 5-chlorooxindole and tenidap which was evaluated as novel nonsteroidal anti-inflammatory agents. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C1—C3/C8) and B (C3—C8) are nearly coplanar, and they are oriented at dihedral angles of A/B = 0.30 (3).

In the crystal structure, intermolecular N—H···O interaction may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, the method developed by Sandmeyer is the oldest and the most frequently used. It consists in the reaction of 4-chloroaniline with chloral hydrate and hydroxylamine hydrochloride in aqueous sodium sulfate to form an 4-chloroisonitrosoacetanilide, which after isolation, when treated with concentrated sulfuric acid, furnishes the title compound in 75% overall yield (Silva et al., 2001). Red blocks of (I) were obtained by slow evaporation of a methanol solution (m.p. 520 K).

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 Å for aromatic, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for NH H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
Fig. 2.
Packing diagram.

Crystal data

C8H4ClNO2Dx = 1.647 Mg m3
Mr = 181.57Melting point: 520 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 24.706 (5) Åθ = 9–13°
b = 5.6890 (11) ŵ = 0.47 mm1
c = 5.209 (1) ÅT = 293 K
V = 732.1 (2) Å3Block, red
Z = 40.10 × 0.05 × 0.05 mm
F(000) = 368

Data collection

Enraf–Nonius CAD-4 diffractometer734 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
graphiteθmax = 27.0°, θmin = 1.7°
ω/2θ scansh = −31→31
Absorption correction: ψ scan (North et al., 1968)k = −7→0
Tmin = 0.955, Tmax = 0.977l = 0→6
1746 measured reflections3 standard reflections every 200 reflections
884 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
884 reflectionsΔρmax = 0.18 e Å3
109 parametersΔρmin = −0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 862 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.11 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.26410 (4)0.6028 (2)0.2215 (3)0.0588 (4)
N0.45038 (11)0.1571 (5)0.7251 (9)0.0378 (8)
H0A0.46760.02910.69240.045*
O10.49964 (12)0.2818 (5)1.0752 (7)0.0441 (7)
C10.46351 (13)0.3075 (6)0.9153 (9)0.0335 (8)
O20.42293 (11)0.6781 (5)1.0449 (7)0.0446 (7)
C20.42335 (13)0.5098 (6)0.9018 (8)0.0332 (8)
C30.38713 (13)0.4525 (6)0.6867 (8)0.0321 (8)
C40.34278 (14)0.5650 (7)0.5820 (9)0.0351 (9)
H4A0.33000.70580.64970.042*
C50.31808 (13)0.4609 (7)0.3733 (8)0.0373 (9)
C60.33568 (15)0.2468 (7)0.2760 (8)0.0409 (10)
H6A0.31750.17930.13810.049*
C70.37976 (16)0.1329 (6)0.3811 (10)0.0390 (9)
H7A0.3920−0.00930.31480.047*
C80.40480 (13)0.2366 (6)0.5864 (9)0.0333 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0493 (6)0.0757 (8)0.0512 (6)0.0147 (5)−0.0117 (6)0.0048 (8)
N0.0425 (16)0.0279 (14)0.0430 (19)0.0100 (12)−0.0008 (19)−0.002 (2)
O10.0477 (13)0.0415 (14)0.0431 (17)0.0070 (13)−0.0070 (15)0.0018 (16)
C10.0351 (18)0.0309 (18)0.034 (2)0.0025 (15)0.0050 (19)0.0035 (19)
O20.0524 (16)0.0387 (14)0.0427 (17)0.0069 (13)0.0030 (15)−0.0108 (15)
C20.0398 (18)0.0263 (15)0.033 (2)0.0039 (15)0.0081 (18)−0.0007 (18)
C30.0341 (16)0.0284 (15)0.034 (2)0.0043 (14)0.0069 (18)0.0027 (17)
C40.0402 (18)0.0330 (17)0.032 (2)0.0046 (15)0.0074 (18)−0.0012 (18)
C50.0326 (16)0.045 (2)0.034 (2)0.0015 (16)0.0002 (18)0.006 (2)
C60.0439 (19)0.045 (2)0.033 (2)−0.0096 (18)0.0013 (18)−0.0013 (19)
C70.049 (2)0.0302 (17)0.038 (2)−0.0020 (16)0.009 (2)−0.0053 (18)
C80.0352 (17)0.0294 (17)0.035 (2)−0.0004 (15)0.0059 (18)−0.0018 (18)

Geometric parameters (Å, °)

Cl—C51.748 (4)C3—C81.404 (5)
N—C11.349 (6)C4—C51.381 (6)
N—C81.412 (5)C4—H4A0.9300
N—H0A0.8600C5—C61.389 (6)
O1—C11.229 (5)C6—C71.380 (6)
C1—C21.521 (4)C6—H6A0.9300
O2—C21.213 (4)C7—C81.369 (6)
C2—C31.471 (5)C7—H7A0.9300
C3—C41.381 (5)
C1—N—C8111.4 (3)C3—C4—H4A121.2
C1—N—H0A124.3C4—C5—C6121.7 (4)
C8—N—H0A124.3C4—C5—Cl119.7 (3)
O1—C1—N126.7 (3)C6—C5—Cl118.6 (3)
O1—C1—C2126.5 (4)C7—C6—C5120.9 (4)
N—C1—C2106.8 (3)C7—C6—H6A119.5
O2—C2—C3129.6 (3)C5—C6—H6A119.5
O2—C2—C1125.1 (4)C8—C7—C6117.6 (4)
C3—C2—C1105.3 (3)C8—C7—H7A121.2
C4—C3—C8120.3 (4)C6—C7—H7A121.2
C4—C3—C2132.9 (3)C7—C8—C3121.8 (4)
C8—C3—C2106.7 (3)C7—C8—N128.5 (3)
C5—C4—C3117.6 (4)C3—C8—N109.7 (4)
C5—C4—H4A121.2
C8—N—C1—O1176.7 (4)C3—C4—C5—Cl−176.5 (3)
C8—N—C1—C2−0.8 (4)C4—C5—C6—C7−1.8 (6)
O1—C1—C2—O22.4 (7)Cl—C5—C6—C7176.9 (3)
N—C1—C2—O2179.9 (4)C5—C6—C7—C81.0 (6)
O1—C1—C2—C3−177.1 (4)C6—C7—C8—C3−0.7 (6)
N—C1—C2—C30.4 (4)C6—C7—C8—N−179.5 (4)
O2—C2—C3—C4−0.2 (7)C4—C3—C8—C71.2 (6)
C1—C2—C3—C4179.2 (4)C2—C3—C8—C7−179.6 (4)
O2—C2—C3—C8−179.3 (4)C4—C3—C8—N−179.8 (4)
C1—C2—C3—C80.2 (4)C2—C3—C8—N−0.6 (4)
C8—C3—C4—C5−1.9 (6)C1—N—C8—C7179.8 (4)
C2—C3—C4—C5179.2 (4)C1—N—C8—C30.9 (5)
C3—C4—C5—C62.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.862.042.893 (4)172
C7—H7A···O2ii0.932.393.301 (5)166

Symmetry codes: (i) −x+1, −y, z−1/2; (ii) x, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5688).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc.12, 273–324.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography