PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2741.
Published online 2010 October 9. doi:  10.1107/S1600536810039024
PMCID: PMC3009091

4,4′-Bipyridine–cyclo­hexane-1,2,4,5-tetra­carb­oxy­lic acid (1/1)

Abstract

In the title 1:1 adduct, C10H8N2·C10H12O8, the dihedral angle between the pyridine rings in the 4,4-bipyridine molecule is 8.33 (13)°. In the crystal, the cyclo­hexane-1,2,4,5-tetra­carb­oxy­lic acid mol­ecules inter­act with each other through inter­molecular O—H(...)O hydrogen bonds, forming an infinite chain along the a axis, which is further linked perpendicularly by O—H(...)N hydrogen bonds involving bipyridine, resulting in a supra­molecular corrugated sheet parallel to the (110) plane.

Related literature

For background to crystal engineering, see: Desiraju (1989 [triangle]); Schultheiss et al. (2010 [triangle]); Ebenezer & Muthiah (2010 [triangle]); An et al. (2010 [triangle]). For a related flexible tetracarboxylic acid, see Holmes et al. (1987 [triangle]); Wang et al. (2009 [triangle]). For a related structure, see: Bhogala et al.(2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2741-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·C10H12O8
  • M r = 416.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2741-efi1.jpg
  • a = 12.345 (3) Å
  • b = 9.724 (2) Å
  • c = 16.497 (4) Å
  • β = 106.364 (3)°
  • V = 1900.1 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.22 × 0.15 × 0.08 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008 [triangle]) T min = 0.975, T max = 0.991
  • 9330 measured reflections
  • 3416 independent reflections
  • 2243 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.143
  • S = 1.05
  • 3416 reflections
  • 275 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039024/dn2606sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039024/dn2606Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Guangdong Medical College for financial support.

supplementary crystallographic information

Comment

The study of non-covalent interactions, such as hydrogen bonding, plays an important role in molecular assembly and crystal engineering (Desiraju, 1989; Schultheiss et al., 2010; Ebenezer & Muthiah, 2010). The simplest cyclohexane-carboxylic acid was firstly employed in the area of coordination chemistry, and many metal–organic frameworks containing cyclohexane-polycarboxylate ligands have been obtained (Holmes et al., 1987; Wang et al., 2009). Furthermore, the cyclohexane-1,2,4,5-tetracarboxylic acid (H4L) with H-bond donor/acceptor groups provides inter- and intramolecular H-bonding interactions with N-donor ligands, a driving force for the assembly of polymeric motifs (An et al., 2010). Initially, we attempted to use H4L and 4,4'-bipyridine as co-ligands in the presence of CuII ion, unfortunately, we only obtained the title compound.

The asymmetric unit contains two molecules the 4,4'-bipyridine and the cyclohexane-1,2,4,5-tetracarboxylic acid (H4L) connected through O—H···N hydrogen bond (Fig. 1). The cyclohexane-1,2,4,5-tetracarboxylic acid molecule interacts with symmetry related molecules through intermolecular O—H···O hydrogen bonds (Table 1), forming a chain parallel to the a axis. These chains are further linked by O—H···N hydrogen bonds involving the bipyridine resulting in a supramolecular corrugated sheet parallel to the (110) plane (Fig. 2, Table 1). Distances and angles agree with related compounds (Bhogala et al., 2005). It is interesting to note that the cyclohexane-1,2,4,5-tetracarboxylic acid is chiral with four stereogenic center corresponding to the RSRS/SRSR diastereoisomer.

Experimental

A mixture of Cu(AC)2.H2O (23 mg, 0.1 mmol), H4L (24 mg, 0.1 mmol), 4,4'-pyridine (16 mg, 0.1 mmol), NaOH (0.1 mmol) and 10ml H2O was stirred for 2 h, and then the mixture was transferred to a 25 ml Teflon-lined reactor and kept under autogenous pressure at 423 K for 5 d. After the reactor was slowly cooled to room temperature over, the title compound was obtained.

Refinement

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5 Ueq(O) .

Figures

Fig. 1.
Molecular structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
Fig. 2.
Partial packing view showing the formation of the sheet through O—H···O and N—H···O hydrogen bonds displayed as dashed line. H atoms not involved in hydrogen bonding have been omitted for ...

Crystal data

C10H8N2·C10H12O8F(000) = 872
Mr = 416.38Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3417 reflections
a = 12.345 (3) Åθ = 1.7–25.2°
b = 9.724 (2) ŵ = 0.11 mm1
c = 16.497 (4) ÅT = 298 K
β = 106.364 (3)°Block, colourless
V = 1900.1 (8) Å30.22 × 0.15 × 0.08 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3416 independent reflections
Radiation source: fine-focus sealed tube2243 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scanθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)h = −14→14
Tmin = 0.975, Tmax = 0.991k = −11→11
9330 measured reflectionsl = −19→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0639P)2 + 0.4389P] where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.27706 (14)0.44090 (19)0.44732 (12)0.0641 (5)
H10.29940.51680.46650.096*
O20.11097 (14)0.54658 (17)0.41482 (10)0.0518 (5)
O30.18983 (14)0.55768 (18)0.23240 (12)0.0636 (5)
O40.34420 (14)0.42876 (17)0.26978 (12)0.0589 (5)
H40.37560.50370.27940.088*
O5−0.04992 (17)0.3310 (2)0.45621 (11)0.0667 (5)
H5−0.08830.36810.48320.100*
O6−0.15670 (16)0.4586 (2)0.35120 (11)0.0692 (6)
O7−0.05944 (14)0.47589 (18)0.07724 (9)0.0553 (5)
O80.10445 (14)0.3927 (2)0.06854 (10)0.0578 (5)
H80.08520.43240.02290.087*
C110.0262 (2)0.4068 (2)0.10675 (14)0.0448 (6)
C120.04494 (19)0.3292 (2)0.18872 (13)0.0434 (6)
H120.01470.23650.17380.052*
C13−0.02428 (18)0.3930 (2)0.24293 (13)0.0439 (6)
H13A−0.00300.48870.25370.053*
H13B−0.10370.39000.21200.053*
C14−0.00665 (19)0.3186 (2)0.32665 (14)0.0447 (6)
H14−0.03320.22410.31300.054*
C15−0.0792 (2)0.3797 (3)0.37755 (15)0.0510 (6)
C160.11869 (19)0.3086 (2)0.37600 (14)0.0439 (6)
H160.12340.24630.42360.053*
C170.1676 (2)0.4448 (3)0.41336 (13)0.0448 (6)
C180.1851 (2)0.2407 (2)0.32092 (14)0.0462 (6)
H18A0.16100.14570.31100.055*
H18B0.26460.24050.35170.055*
C190.17057 (19)0.3116 (2)0.23536 (14)0.0426 (6)
H190.20320.25090.20110.051*
C200.23417 (19)0.4466 (2)0.24532 (13)0.0434 (6)
N10.64426 (18)1.3190 (2)0.48929 (14)0.0598 (6)
N20.45114 (19)0.6692 (2)0.31157 (14)0.0628 (6)
C10.3891 (2)0.7823 (3)0.2905 (2)0.0752 (9)
H1A0.31800.77430.25210.090*
C20.5531 (2)0.6854 (3)0.36420 (18)0.0708 (8)
H20.59920.60830.37840.085*
C30.5951 (2)0.8100 (3)0.39928 (17)0.0642 (8)
H30.66750.81540.43600.077*
C40.4243 (2)0.9105 (3)0.32249 (19)0.0713 (8)
H4A0.37740.98630.30560.086*
C50.5293 (2)0.9264 (3)0.37970 (15)0.0502 (6)
C60.5699 (2)1.0628 (3)0.41730 (15)0.0510 (6)
C70.6679 (2)1.0774 (3)0.4825 (2)0.0817 (10)
H70.71141.00050.50390.098*
C80.7015 (2)1.2050 (3)0.5157 (2)0.0809 (10)
H8A0.76821.21160.55920.097*
C90.5115 (2)1.1812 (3)0.39072 (19)0.0710 (8)
H90.44521.17820.34660.085*
C100.5494 (2)1.3050 (3)0.42825 (19)0.0770 (9)
H100.50591.38290.40960.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0506 (10)0.0539 (12)0.0736 (12)0.0025 (9)−0.0055 (9)−0.0150 (9)
O20.0551 (10)0.0423 (10)0.0511 (10)0.0043 (8)0.0035 (8)−0.0037 (7)
O30.0496 (10)0.0378 (11)0.0928 (14)−0.0003 (8)0.0027 (9)0.0034 (9)
O40.0451 (10)0.0509 (11)0.0739 (12)−0.0023 (8)0.0055 (9)−0.0018 (9)
O50.0850 (14)0.0675 (13)0.0526 (11)0.0182 (10)0.0275 (10)0.0121 (9)
O60.0627 (12)0.0789 (14)0.0641 (12)0.0200 (11)0.0148 (9)0.0068 (10)
O70.0520 (10)0.0667 (12)0.0430 (9)0.0097 (9)0.0066 (8)0.0042 (8)
O80.0573 (11)0.0720 (13)0.0431 (10)0.0095 (9)0.0123 (8)0.0055 (8)
C110.0442 (14)0.0421 (14)0.0432 (13)−0.0045 (11)0.0042 (11)−0.0098 (10)
C120.0472 (13)0.0361 (13)0.0405 (12)−0.0070 (10)0.0019 (10)−0.0041 (10)
C130.0406 (13)0.0433 (14)0.0429 (12)−0.0008 (11)0.0040 (10)0.0006 (10)
C140.0496 (13)0.0344 (13)0.0472 (13)−0.0021 (11)0.0090 (11)−0.0006 (10)
C150.0538 (15)0.0488 (16)0.0481 (14)−0.0035 (13)0.0106 (12)0.0012 (12)
C160.0499 (14)0.0350 (13)0.0435 (13)0.0012 (11)0.0079 (10)0.0055 (10)
C170.0506 (15)0.0448 (15)0.0341 (12)0.0025 (12)0.0038 (10)0.0021 (10)
C180.0528 (14)0.0309 (13)0.0500 (13)0.0029 (11)0.0064 (11)0.0011 (10)
C190.0460 (13)0.0346 (13)0.0447 (13)0.0006 (10)0.0085 (10)−0.0041 (10)
C200.0417 (13)0.0461 (15)0.0377 (12)−0.0015 (11)0.0037 (10)−0.0014 (10)
N10.0532 (13)0.0507 (14)0.0681 (14)−0.0042 (11)0.0051 (11)−0.0076 (11)
N20.0562 (14)0.0545 (15)0.0725 (15)−0.0120 (12)0.0098 (12)−0.0052 (11)
C10.0527 (17)0.064 (2)0.097 (2)−0.0059 (15)0.0005 (15)−0.0144 (17)
C20.0712 (19)0.0468 (17)0.081 (2)−0.0035 (14)0.0001 (16)0.0061 (14)
C30.0571 (16)0.0519 (17)0.0703 (18)−0.0051 (13)−0.0037 (13)0.0025 (13)
C40.0489 (16)0.0555 (18)0.096 (2)−0.0009 (13)−0.0007 (15)−0.0136 (15)
C50.0472 (14)0.0479 (16)0.0551 (14)−0.0075 (12)0.0140 (11)−0.0017 (11)
C60.0438 (14)0.0524 (16)0.0554 (15)−0.0050 (12)0.0116 (11)−0.0009 (12)
C70.0556 (17)0.0535 (19)0.113 (3)0.0029 (14)−0.0137 (17)−0.0099 (17)
C80.0566 (18)0.063 (2)0.100 (2)−0.0029 (16)−0.0161 (16)−0.0139 (17)
C90.0581 (17)0.0552 (18)0.0795 (19)−0.0018 (14)−0.0135 (14)−0.0039 (14)
C100.0664 (19)0.0549 (19)0.090 (2)0.0023 (15)−0.0099 (16)−0.0040 (15)

Geometric parameters (Å, °)

O1—C171.310 (3)C18—H18A0.9700
O1—H10.8200C18—H18B0.9700
O2—C171.215 (3)C19—C201.515 (3)
O3—C201.202 (3)C19—H190.9800
O4—C201.315 (3)N1—C101.319 (3)
O4—H40.8200N1—C81.321 (3)
O5—C151.332 (3)N2—C21.321 (3)
O5—H50.8200N2—C11.329 (4)
O6—C151.207 (3)C1—C41.375 (4)
O7—C111.231 (3)C1—H1A0.9300
O8—C111.301 (3)C2—C31.379 (4)
O8—H80.8200C2—H20.9300
C11—C121.508 (3)C3—C51.378 (4)
C12—C131.532 (3)C3—H30.9300
C12—C191.534 (3)C4—C51.380 (3)
C12—H120.9800C4—H4A0.9300
C13—C141.520 (3)C5—C61.490 (3)
C13—H13A0.9700C6—C91.364 (4)
C13—H13B0.9700C6—C71.381 (4)
C14—C151.512 (3)C7—C81.372 (4)
C14—C161.535 (3)C7—H70.9300
C14—H140.9800C8—H8A0.9300
C16—C171.513 (3)C9—C101.374 (4)
C16—C181.534 (3)C9—H90.9300
C16—H160.9800C10—H100.9300
C18—C191.535 (3)
C17—O1—H1109.5H18A—C18—H18B107.6
C20—O4—H4109.5C20—C19—C12112.18 (19)
C15—O5—H5109.5C20—C19—C18111.54 (18)
C11—O8—H8109.5C12—C19—C18110.52 (19)
O7—C11—O8122.5 (2)C20—C19—H19107.5
O7—C11—C12121.7 (2)C12—C19—H19107.5
O8—C11—C12115.7 (2)C18—C19—H19107.5
C11—C12—C13110.54 (19)O3—C20—O4123.5 (2)
C11—C12—C19112.56 (19)O3—C20—C19124.3 (2)
C13—C12—C19113.81 (18)O4—C20—C19112.2 (2)
C11—C12—H12106.5C10—N1—C8116.2 (2)
C13—C12—H12106.5C2—N2—C1116.4 (2)
C19—C12—H12106.5N2—C1—C4123.6 (3)
C14—C13—C12112.17 (19)N2—C1—H1A118.2
C14—C13—H13A109.2C4—C1—H1A118.2
C12—C13—H13A109.2N2—C2—C3123.8 (3)
C14—C13—H13B109.2N2—C2—H2118.1
C12—C13—H13B109.2C3—C2—H2118.1
H13A—C13—H13B107.9C5—C3—C2119.8 (2)
C15—C14—C13111.2 (2)C5—C3—H3120.1
C15—C14—C16113.39 (19)C2—C3—H3120.1
C13—C14—C16112.16 (19)C1—C4—C5119.9 (3)
C15—C14—H14106.5C1—C4—H4A120.1
C13—C14—H14106.5C5—C4—H4A120.1
C16—C14—H14106.5C3—C5—C4116.5 (2)
O6—C15—O5123.2 (2)C3—C5—C6121.8 (2)
O6—C15—C14125.7 (2)C4—C5—C6121.7 (2)
O5—C15—C14111.1 (2)C9—C6—C7115.6 (2)
C17—C16—C18113.58 (19)C9—C6—C5122.2 (2)
C17—C16—C14112.76 (19)C7—C6—C5122.3 (2)
C18—C16—C14109.87 (18)C8—C7—C6120.2 (3)
C17—C16—H16106.7C8—C7—H7119.9
C18—C16—H16106.7C6—C7—H7119.9
C14—C16—H16106.7N1—C8—C7123.7 (3)
O2—C17—O1123.0 (2)N1—C8—H8A118.2
O2—C17—C16123.7 (2)C7—C8—H8A118.2
O1—C17—C16113.2 (2)C6—C9—C10120.9 (2)
C16—C18—C19114.08 (18)C6—C9—H9119.6
C16—C18—H18A108.7C10—C9—H9119.6
C19—C18—H18A108.7N1—C10—C9123.4 (3)
C16—C18—H18B108.7N1—C10—H10118.3
C19—C18—H18B108.7C9—C10—H10118.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.812.630 (3)177
O4—H4···N20.821.862.678 (3)175
O5—H5···O2ii0.821.962.723 (2)153
O8—H8···O7iii0.821.822.641 (2)174

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2606).

References

  • An, L., Zhou, J., Zhao, L. & Lv, Y. J. (2010). Struct. Chem.21, 159–164.
  • Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.
  • Bruker (2008). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  • Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2634–o2635. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Holmes, R. R., Schmid, C. G., Chandrasekhar, V., Day, R. O. & Holmes, J. M. J. (1987). J. Am. Chem. Soc.109, 1408–1409.
  • Schultheiss, N., Roe, M. & Smit, J. P. (2010). Acta Cryst. E66, o2297–o2298. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, J., Ou, Y. C., Shen, Y., Yun, L., Leng, J. D., Lin, Z. J. & Tong, M. L. (2009). Cryst. Growth Des.9, 2442–2450.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography