PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2996.
Published online 2010 October 31. doi:  10.1107/S160053681004345X
PMCID: PMC3009090

Acridinium 2-hy­droxy­benzoate

Abstract

In the title compound, C13H10N+·C7H5O3 or (acrH)+(Hsal), the asymmetric unit contains one acridinium cation and one salicylate anion. The acridinium N atom is protonated and the carb­oxy­lic acid group of salicylic acid is deprotonated. Both moieties are planar, with an r.m.s. deviation of 0.0127 Å for the acr cation and 0.0235 ° for the sal anion. They are aligned with a dihedral angle of 71.68 (3)° between them. The crystal structure is stabilized by a network of inter­molecular N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds. C—H(...)π inter­actions are also present.

Related literature

For work on mol­ecular self-association, see: Moghimi et al. (2005 [triangle]); Eshtiagh-Hosseini, Hassanpoor, Canadillas-Delgado & Mirzaei (2010 [triangle]); Eshtiagh-Hosseini, Mahjoobizadeh & Mirzaei (2010 [triangle]). For related structures, see: Gellert & Hsu (1988 [triangle]); Hemamalini & Fun (2010 [triangle]); Muthiah et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2996-scheme1.jpg

Experimental

Crystal data

  • C13H10N+·C7H5O3
  • M r = 317.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2996-efi1.jpg
  • a = 7.128 (3) Å
  • b = 9.472 (3) Å
  • c = 22.637 (9) Å
  • β = 91.449 (10)°
  • V = 1527.9 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.30 × 0.25 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.973, T max = 0.991
  • 10437 measured reflections
  • 4488 independent reflections
  • 3161 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.128
  • S = 1.04
  • 4488 reflections
  • 241 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004345X/bq2237sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004345X/bq2237Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Ferdowsi University of Mashhad is gratefully acknowledged for financial support.

supplementary crystallographic information

Comment

Molecular self-association involves the spontaneous association of molecules into stable aggregates, joined by ion-pairing, hydrogen bonding, π–π stacking and donor–acceptor intractions (Moghimi et al., 2005). Our research group recently focused on the syntheses as suitable ligands in the synthesis of metal–organic framework. For example, ion pairs have been reported between pyrazine-2,3-dicarboxylic acid with 2,4,6-triamino-1,3,5-triazin (Eshtiagh-Hosseini, Hassanpoor et al., 2010) and 4-hydroxy pyridine-2,6-dicarboxylic acid bearing 2-amino pyrimidine (Eshtiagh-Hosseini, Mahjoobizadeh et al., 2010). Salicylic acid is important in biological systems thus there have been several attempts to prepare proton-transfer compounds involving H2sal with various organic bases such as 2-amino pyridine (Gellert & Hsu, 1988), 2-amino-4,6-dimethyl primidine (Muthiah et al., 2006) and 2-amino-5-chloroprimidine (Hemamalini & Fun, 2010). In this work, we reported a new proton-transfer compound obtained from salicylic acid (H2sal) as a proton donor and acridine (acr) as an acceptor in which acridinium N atom is protonated and carboxylic group of salicilic acid is deprotonated. The molecular structure of I, is shown in Fig. 1. The crystal structure is stabilized by a network of intermolecular N—H···O and C—H···O hydrogen bonds with H···A distance ranging from 1.55 (2) to 2.49 (2) Å (Table 1). Furthermore, in the crystalline network there is an intramolecular O—H···O hydrogen bond between phenolic OH and the carboxyl group (Fig. 2). In the crystal structure, C—H···π interactions (Table 1) [Cg1 is the centroid of C2–C7 benzene ring of H2sal] may further stabilize the structure. Above-mentioned van der Waals interactions lead to the formation and then expansion of a proton-transfer ligand.

Experimental

By refluxing 0.14 mmol (0.025 g) H2sal and 0.14 mmol (0.025 g) Acr in 15 ml water for 3 h at 353 K, an orange solution was obtained. This solution gave orange needle-like crystal of the title compound after slow evaporation of the solvent at R.T.

Refinement

H1 and H3–H7 atoms were positioned from Fourier map and other H atoms were positioned geometrically and allowed to ride during refinement isotropically. C—H distances are 0.93 Å for C(sp2) and and Uiso = p Ueq(parent atom) [p = 1.2 for C(sp2)].

Figures

Fig. 1.
Schematic representation of asymmetric units of the title compound.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C13H10N+·C7H5O3F(000) = 664
Mr = 317.33Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 1285 reflections
a = 7.128 (3) Åθ = 2–25°
b = 9.472 (3) ŵ = 0.09 mm1
c = 22.637 (9) ÅT = 100 K
β = 91.449 (10)°Prism, light-orange
V = 1527.9 (10) Å30.30 × 0.25 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4488 independent reflections
Radiation source: fine-focus sealed tube3161 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 30.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→8
Tmin = 0.973, Tmax = 0.991k = −12→13
10437 measured reflectionsl = −32→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0581P)2 + 0.2765P] where P = (Fo2 + 2Fc2)/3
4488 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.74651 (19)0.32545 (14)0.35776 (6)0.0186 (3)
C20.73287 (18)0.43221 (14)0.30953 (6)0.0163 (3)
C30.89699 (18)0.48889 (14)0.28532 (6)0.0183 (3)
C40.8833 (2)0.59342 (15)0.24213 (7)0.0218 (3)
C50.7091 (2)0.63934 (16)0.22190 (7)0.0228 (3)
C60.5458 (2)0.58278 (16)0.24467 (6)0.0212 (3)
C70.5587 (2)0.47998 (15)0.28815 (6)0.0186 (3)
C80.70546 (18)0.32647 (15)0.01980 (6)0.0169 (3)
C90.76980 (18)0.40801 (15)0.06919 (6)0.0171 (3)
C100.81472 (18)0.54997 (15)0.06022 (6)0.0181 (3)
H100.85880.60410.09190.022*
C110.79458 (18)0.61143 (15)0.00465 (6)0.0173 (3)
C120.72746 (17)0.52574 (15)−0.04321 (6)0.0171 (3)
C130.70495 (19)0.58406 (16)−0.10047 (6)0.0203 (3)
H130.66040.5286−0.13170.024*
C140.74913 (19)0.72240 (16)−0.10951 (7)0.0236 (3)
H140.73410.7608−0.14710.028*
C150.8176 (2)0.80885 (16)−0.06248 (7)0.0237 (3)
H150.84730.9028−0.06970.028*
C160.84006 (19)0.75551 (15)−0.00700 (7)0.0207 (3)
H160.88520.81300.02350.025*
C170.78718 (19)0.34000 (16)0.12514 (6)0.0210 (3)
H170.82860.39090.15810.025*
C180.74345 (19)0.20068 (16)0.13068 (7)0.0228 (3)
H180.75440.15760.16750.027*
C190.6817 (2)0.12079 (16)0.08115 (7)0.0236 (3)
H190.65350.02560.08580.028*
C200.66274 (19)0.18115 (15)0.02653 (6)0.0203 (3)
H200.62240.1277−0.00580.024*
N10.68547 (15)0.38796 (13)−0.03385 (5)0.0176 (2)
O10.90825 (14)0.28524 (12)0.37528 (5)0.0275 (3)
O20.59605 (14)0.28037 (11)0.37986 (4)0.0220 (2)
O31.06952 (14)0.44374 (11)0.30336 (5)0.0261 (3)
H10.647 (3)0.324 (2)−0.0700 (10)0.053 (6)*
H31.044 (3)0.376 (3)0.3363 (11)0.072 (8)*
H40.994 (3)0.634 (2)0.2274 (8)0.034 (5)*
H50.699 (2)0.7128 (19)0.1916 (8)0.029 (5)*
H60.421 (2)0.6185 (18)0.2298 (8)0.028 (5)*
H70.447 (2)0.4414 (16)0.3052 (7)0.018 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0232 (7)0.0150 (6)0.0173 (6)0.0020 (5)−0.0033 (5)−0.0012 (5)
C20.0197 (7)0.0127 (6)0.0163 (6)0.0005 (5)−0.0011 (5)−0.0011 (5)
C30.0179 (6)0.0156 (6)0.0214 (7)0.0018 (5)−0.0011 (5)−0.0039 (5)
C40.0241 (7)0.0174 (7)0.0241 (8)−0.0019 (5)0.0046 (6)−0.0002 (6)
C50.0320 (8)0.0176 (7)0.0189 (7)0.0014 (6)0.0013 (6)0.0006 (6)
C60.0240 (7)0.0203 (7)0.0191 (7)0.0041 (6)−0.0035 (5)0.0001 (5)
C70.0194 (7)0.0177 (7)0.0185 (7)0.0007 (5)−0.0010 (5)−0.0008 (5)
C80.0128 (6)0.0197 (7)0.0182 (7)0.0010 (5)0.0010 (5)−0.0011 (5)
C90.0135 (6)0.0209 (7)0.0168 (7)0.0014 (5)−0.0004 (5)−0.0025 (5)
C100.0150 (6)0.0202 (7)0.0189 (7)0.0011 (5)−0.0016 (5)−0.0043 (5)
C110.0132 (6)0.0185 (7)0.0202 (7)0.0017 (5)0.0000 (5)−0.0019 (5)
C120.0125 (6)0.0196 (7)0.0193 (7)0.0021 (5)0.0007 (5)−0.0009 (5)
C130.0179 (7)0.0253 (7)0.0177 (7)0.0016 (5)−0.0006 (5)−0.0011 (6)
C140.0196 (7)0.0282 (8)0.0229 (7)0.0042 (6)0.0001 (5)0.0055 (6)
C150.0206 (7)0.0188 (7)0.0315 (8)0.0017 (5)−0.0001 (6)0.0028 (6)
C160.0177 (7)0.0183 (7)0.0262 (8)0.0008 (5)−0.0010 (5)−0.0027 (6)
C170.0191 (7)0.0257 (8)0.0181 (7)0.0014 (5)−0.0007 (5)−0.0019 (6)
C180.0211 (7)0.0268 (8)0.0206 (7)0.0012 (6)0.0006 (5)0.0039 (6)
C190.0217 (7)0.0210 (7)0.0282 (8)−0.0005 (5)0.0016 (6)0.0013 (6)
C200.0183 (7)0.0203 (7)0.0225 (7)−0.0019 (5)0.0003 (5)−0.0033 (5)
N10.0158 (5)0.0195 (6)0.0176 (6)0.0008 (4)0.0000 (4)−0.0032 (5)
O10.0222 (5)0.0288 (6)0.0311 (6)0.0049 (4)−0.0045 (4)0.0095 (5)
O20.0231 (5)0.0232 (5)0.0197 (5)−0.0012 (4)−0.0018 (4)0.0050 (4)
O30.0178 (5)0.0223 (6)0.0381 (7)0.0019 (4)−0.0009 (4)0.0022 (5)

Geometric parameters (Å, °)

C1—O11.2681 (17)C11—C121.4268 (19)
C1—O21.2688 (17)C11—C161.429 (2)
C1—C21.4895 (19)C12—N11.3568 (19)
C2—C71.3966 (19)C12—C131.414 (2)
C2—C31.4105 (19)C13—C141.364 (2)
C3—O31.3551 (17)C13—H130.9300
C3—C41.393 (2)C14—C151.420 (2)
C4—C51.382 (2)C14—H140.9300
C4—H40.943 (18)C15—C161.359 (2)
C5—C61.392 (2)C15—H150.9300
C5—H50.979 (18)C16—H160.9300
C6—C71.386 (2)C17—C181.362 (2)
C6—H61.002 (17)C17—H170.9300
C7—H70.966 (16)C18—C191.414 (2)
C8—N11.3511 (18)C18—H180.9300
C8—C201.419 (2)C19—C201.366 (2)
C8—C91.4252 (19)C19—H190.9300
C9—C101.398 (2)C20—H200.9300
C9—C171.424 (2)N1—H11.05 (2)
C10—C111.3901 (19)O3—H31.01 (3)
C10—H100.9300
O1—C1—O2123.12 (13)C12—C11—C16118.46 (13)
O1—C1—C2118.37 (12)N1—C12—C13119.90 (13)
O2—C1—C2118.51 (12)N1—C12—C11119.98 (12)
C7—C2—C3118.74 (13)C13—C12—C11120.12 (13)
C7—C2—C1121.00 (12)C14—C13—C12119.43 (13)
C3—C2—C1120.25 (12)C14—C13—H13120.3
O3—C3—C4118.87 (13)C12—C13—H13120.3
O3—C3—C2121.19 (13)C13—C14—C15121.19 (14)
C4—C3—C2119.94 (13)C13—C14—H14119.4
C5—C4—C3120.18 (13)C15—C14—H14119.4
C5—C4—H4120.2 (11)C16—C15—C14120.57 (14)
C3—C4—H4119.6 (11)C16—C15—H15119.7
C4—C5—C6120.56 (14)C14—C15—H15119.7
C4—C5—H5120.5 (10)C15—C16—C11120.24 (14)
C6—C5—H5119.0 (10)C15—C16—H16119.9
C7—C6—C5119.50 (14)C11—C16—H16119.9
C7—C6—H6121.3 (10)C18—C17—C9120.34 (13)
C5—C6—H6119.2 (10)C18—C17—H17119.8
C6—C7—C2121.07 (13)C9—C17—H17119.8
C6—C7—H7120.7 (9)C17—C18—C19120.86 (14)
C2—C7—H7118.2 (9)C17—C18—H18119.6
N1—C8—C20119.78 (12)C19—C18—H18119.6
N1—C8—C9119.74 (13)C20—C19—C18121.03 (14)
C20—C8—C9120.47 (13)C20—C19—H19119.5
C10—C9—C17123.32 (13)C18—C19—H19119.5
C10—C9—C8118.52 (13)C19—C20—C8119.13 (13)
C17—C9—C8118.15 (13)C19—C20—H20120.4
C11—C10—C9121.02 (13)C8—C20—H20120.4
C11—C10—H10119.5C8—N1—C12122.44 (12)
C9—C10—H10119.5C8—N1—H1118.3 (12)
C10—C11—C12118.28 (13)C12—N1—H1119.1 (12)
C10—C11—C16123.25 (13)C3—O3—H3104.2 (14)
O1—C1—C2—C7179.63 (13)C10—C11—C12—N1−0.11 (18)
O2—C1—C2—C7−1.2 (2)C16—C11—C12—N1179.08 (12)
O1—C1—C2—C3−1.5 (2)C10—C11—C12—C13−179.99 (12)
O2—C1—C2—C3177.62 (12)C16—C11—C12—C13−0.79 (18)
C7—C2—C3—O3−178.30 (12)N1—C12—C13—C14−179.43 (12)
C1—C2—C3—O32.8 (2)C11—C12—C13—C140.44 (19)
C7—C2—C3—C41.8 (2)C12—C13—C14—C150.1 (2)
C1—C2—C3—C4−177.04 (13)C13—C14—C15—C16−0.3 (2)
O3—C3—C4—C5178.54 (13)C14—C15—C16—C11−0.1 (2)
C2—C3—C4—C5−1.6 (2)C10—C11—C16—C15179.77 (13)
C3—C4—C5—C60.5 (2)C12—C11—C16—C150.62 (19)
C4—C5—C6—C70.2 (2)C10—C9—C17—C18−179.08 (13)
C5—C6—C7—C20.0 (2)C8—C9—C17—C180.14 (19)
C3—C2—C7—C6−1.1 (2)C9—C17—C18—C190.5 (2)
C1—C2—C7—C6177.80 (13)C17—C18—C19—C20−0.5 (2)
N1—C8—C9—C10−1.41 (18)C18—C19—C20—C8−0.2 (2)
C20—C8—C9—C10178.42 (12)N1—C8—C20—C19−179.31 (12)
N1—C8—C9—C17179.33 (12)C9—C8—C20—C190.86 (19)
C20—C8—C9—C17−0.84 (18)C20—C8—N1—C12−178.74 (12)
C17—C9—C10—C11−179.78 (12)C9—C8—N1—C121.09 (19)
C8—C9—C10—C111.00 (19)C13—C12—N1—C8179.55 (12)
C9—C10—C11—C12−0.26 (19)C11—C12—N1—C8−0.32 (19)
C9—C10—C11—C16−179.41 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i1.05 (2)2.49 (2)3.100 (2)116.4 (15)
N1—H1···O2i1.05 (2)1.55 (2)2.5887 (19)174.8 (18)
O3—H3···O11.00 (3)1.58 (2)2.5141 (19)153 (2)
C10—H10···O1ii0.932.493.294 (2)145
C18—H18···O3iii0.932.463.135 (2)129
C14—H14···Cg1iv0.932.763.644 (2)159
C17—H17···Cg10.932.913.716 (2)146

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2237).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010). Acta Cryst. E66, o1368–o1369. [PMC free article] [PubMed]
  • Eshtiagh-Hosseini, H., Mahjoobizadeh, M. & Mirzaei, M. (2010). Acta Cryst. E66, o2210. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313. [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418–o1419. [PMC free article] [PubMed]
  • Moghimi, A., Aghabozorg, H., Sheshmani, S., Kickelbick, G. & Soleimannejad, J. (2005). Anal. Sci.21, 141–142.
  • Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography