PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3007.
Published online 2010 October 31. doi:  10.1107/S1600536810043345
PMCID: PMC3009089

N-Benzyl-2,3,4,5,6-penta­fluoro­benz­amide

Abstract

In the title compound, C14H8F5NO, the dihedral angle between the planes of the penta­fluoro­phenyl and phenyl rings is 18.34 (5)°. An inter­molecular N—H(...)O hydrogen bond between the amide groups connects these mol­ecules to form an infinite chain through the crystal structure. One weak intermolecular C—H(...)O contact and one π–π interaction [centroid–centroid distance = 3.772 (3) Å] are also involved in crystal structure stabilization between the phenyl rings.

Related literature

For related structures, see: An & Rhee (2003 [triangle]); Cockroft et al. (2007 [triangle]); Forbes et al. (2001 [triangle]); Liu et al. (2007 [triangle]); Qadeer et al. (2007 [triangle]); Zhang & Zhang (2008 [triangle]). For anion(...)π inter­actions, see: Albrecht et al. (2010 [triangle]); Lahtinen & Rissanen (2007 [triangle]); Müller et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3007-scheme1.jpg

Experimental

Crystal data

  • C14H8F5NO
  • M r = 301.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3007-efi1.jpg
  • a = 7.1649 (2) Å
  • b = 22.9090 (5) Å
  • c = 7.5363 (1) Å
  • β = 99.205 (2)°
  • V = 1221.08 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 123 K
  • 0.40 × 0.28 × 0.26 mm

Data collection

  • Bruker Nonius KappaCCD with APEXII detector diffractometer
  • 4246 measured reflections
  • 2152 independent reflections
  • 1891 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.086
  • S = 1.06
  • 2152 reflections
  • 193 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Bruker, 2008 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043345/bt5380sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043345/bt5380Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Academy of Finland (KR, project No. 212588).

supplementary crystallographic information

Comment

The title compound is synthesized by classical amide formation reaction between amine (benzylamine) and carboxylic acid halide (2,3,4,5,6-pentafluorobenzoylchloride). The molecule of this secondary amide is not planar and contains two aromatic ring systems (Fig. 1), the other one being electron poor due to electron-withdrawing force of connected F atoms. This pentafluorophenyl moiety has recently been found to be an excellent halogen···π contact acceptor for halide and polyhalide anions in similar ammonium salt structures (Albrecht et al., 2010; Müller et al., 2010) and also acceptor for C═O···C(aromatic) anion···.π-type contacts (Lahtinen & Rissanen, 2007). The pentafluorophenyl ring is found to be inclined to phenyl ring by 18.34 (5)°. The C10/C9/N8/O1 amide group is more significantly inclined to pentafluorophenyl ring by 56.95 (4)° and to phenyl ring by 56.21 (4)°, as also observed, for example, with few substituted N-phenyl-2,3,4,5,6-pentafluorobenzamides (Cockroft et al., 2007) and N-Benzyl-4,5-dimethoxy-2-nitrobenzamide (Qadeer et al., 2007).

The intermolecular interactions of the title compound include one N—H···O, one C—H···O (Table 1) and one π–π contacts. The N—H···O hydrogen bonds connect the molecules to form infinite chain in (x + 1/2, -y + 1/2, z + 1/2) direction (Fig. 2), where every second molecule is in same orientation and every second is rotated 180° on the direction of b axis. Similar chain was obtained, for example,with N-Benzyl-4-phenylbenzamide (An & Rhee, 2003). These chains are connected to each other by one C—H···O (Table 1) and one π–π contacts (Fig. 3), the latter having centroid-to-centroid distance of 3.772 (3) Å and closest C···C distance of 3.327 (3) Å. These distances are slightly longer than in the structure of N-(2-pyridyl)-2,3,4,5,6-pentafluorobenzamide (Forbes et al., 2001). The C═O···C(aromatic) anion···.π-type contact, found from the related structure of N-[1-(silatran-1-yl)propyl]pentaflurobenzamide (Lahtinen & Rissanen, 2007), seems to be in this case forced by nearby N—H···O contact. Fluorines F3 and F4 (Fig. 1) show distance 2.920 (2) Å to F3 and F4 of the neighbouring molecule in (-x, -y, -z + 1) direction, but this contact is most probably too weak to be significant in crystal stabilization.

Experimental

Benzylamine (184 mg, 1.72 mmol) and triethylamine (470µl, 3.44 mmol) were mixed in dry DCM under inert atmosphere (Ar). The reaction mixture was cooled (ice–salt bath) and 2,3,4,5,6-pentafluorobenzoylchloride (240µl, 1.72 mmol) in dry DCM was added dropwise to the reaction mixture. After addition the reaction mixture was stirred in ice–salt bath for 1 h and in room temperature for additional 20 h. The reaction mixture was washed twice with water and organic layer was dried and evaporated to yield white solid product. For the single-crystal X-ray analysis the crude product was recrystallized from CHCl3 yielding colourless needles.

Refinement

All H atoms were visible in electron density maps, but those bonded to C were ideally positioned and allowed to ride on their parent atoms at C—H distances of 0.95 Å (aromatic) and 0.99 Å (methylene), with Uiso(H) of 1.2 times Ueq(C). The N—H proton were found in the electron density map and was refined with a distance restraint [N—H = 0.88 (2) Å], and Uiso(H) = 1.2 times Ueq(N) was used.

Figures

Fig. 1.
View of the molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
Fig. 2.
Part of the infinite chain formed by N—H···O hydrogen bonds in the crystal of the title compound.
Fig. 3.
Packing diagram showing the N—H···O, C—H···O and π–π contacts.

Crystal data

C14H8F5NOF(000) = 608
Mr = 301.21Dx = 1.638 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1649 (2) ÅCell parameters from 3094 reflections
b = 22.9090 (5) Åθ = 0.4–28.3°
c = 7.5363 (1) ŵ = 0.16 mm1
β = 99.205 (2)°T = 123 K
V = 1221.08 (5) Å3Block, colourless
Z = 40.40 × 0.28 × 0.26 mm

Data collection

Bruker Nonius KappaCCD with APEXII detector diffractometer1891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 25.0°, θmin = 2.9°
Detector resolution: 9 pixels mm-1h = −8→8
[var phi] and ω scansk = −27→27
4246 measured reflectionsl = −8→8
2152 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0393P)2 + 0.498P] where P = (Fo2 + 2Fc2)/3
2152 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.11992 (14)0.19154 (4)−0.04946 (11)0.0315 (2)
F20.17000 (14)0.07495 (4)−0.05119 (12)0.0350 (3)
F30.14683 (15)0.01169 (4)0.24882 (14)0.0379 (3)
F40.06766 (15)0.06526 (4)0.54949 (12)0.0363 (3)
F50.00325 (13)0.18090 (4)0.54897 (11)0.0277 (2)
O1−0.10620 (15)0.27306 (4)0.12572 (13)0.0260 (3)
N80.12659 (19)0.28716 (5)0.36339 (16)0.0232 (3)
H80.218 (2)0.2705 (7)0.437 (2)0.028*
C10.1073 (2)0.37470 (6)0.55552 (19)0.0207 (3)
C20.1399 (2)0.43426 (7)0.5826 (2)0.0240 (3)
H20.16520.45790.48560.029*
C30.1359 (2)0.45945 (7)0.7488 (2)0.0278 (4)
H30.15700.50020.76490.033*
C40.1011 (2)0.42535 (7)0.8916 (2)0.0277 (4)
H40.09830.44251.00590.033*
C50.0703 (2)0.36600 (7)0.8668 (2)0.0262 (4)
H50.04740.34240.96480.031*
C60.0729 (2)0.34078 (7)0.6995 (2)0.0226 (3)
H60.05090.30010.68350.027*
C70.1041 (2)0.35043 (6)0.3685 (2)0.0262 (4)
H7A−0.01740.36120.29350.031*
H7B0.20680.36890.31490.031*
C90.0197 (2)0.25426 (6)0.24216 (18)0.0197 (3)
C100.0625 (2)0.18984 (6)0.25080 (18)0.0197 (3)
C110.1035 (2)0.16115 (7)0.09949 (19)0.0224 (3)
C120.1315 (2)0.10168 (7)0.0975 (2)0.0249 (4)
C130.1202 (2)0.06950 (7)0.2499 (2)0.0258 (4)
C140.0806 (2)0.09667 (7)0.4021 (2)0.0253 (4)
C150.0511 (2)0.15619 (7)0.40118 (19)0.0215 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0414 (6)0.0350 (5)0.0190 (5)−0.0003 (4)0.0075 (4)0.0023 (4)
F20.0382 (6)0.0351 (5)0.0326 (5)0.0004 (4)0.0089 (4)−0.0129 (4)
F30.0420 (6)0.0199 (5)0.0515 (6)0.0005 (4)0.0070 (5)−0.0003 (4)
F40.0463 (6)0.0303 (5)0.0315 (5)−0.0016 (4)0.0039 (4)0.0131 (4)
F50.0343 (5)0.0314 (5)0.0176 (4)−0.0017 (4)0.0050 (4)−0.0009 (4)
O10.0271 (6)0.0248 (6)0.0223 (5)−0.0011 (5)−0.0072 (5)0.0037 (4)
N80.0258 (7)0.0204 (7)0.0203 (6)0.0035 (5)−0.0057 (5)−0.0006 (5)
C10.0169 (7)0.0222 (8)0.0215 (7)0.0018 (6)−0.0015 (6)0.0001 (6)
C20.0239 (8)0.0241 (8)0.0232 (8)−0.0008 (6)0.0016 (6)0.0022 (6)
C30.0255 (8)0.0233 (8)0.0333 (9)−0.0014 (7)0.0006 (7)−0.0045 (7)
C40.0249 (9)0.0354 (9)0.0227 (8)0.0027 (7)0.0034 (6)−0.0067 (7)
C50.0217 (8)0.0350 (9)0.0222 (8)0.0016 (7)0.0046 (6)0.0041 (6)
C60.0209 (8)0.0201 (7)0.0256 (8)0.0005 (6)0.0001 (6)0.0019 (6)
C70.0345 (9)0.0212 (8)0.0212 (8)0.0008 (7)−0.0004 (6)0.0009 (6)
C90.0191 (8)0.0242 (8)0.0158 (7)−0.0019 (6)0.0025 (6)0.0024 (6)
C100.0148 (7)0.0243 (8)0.0186 (7)−0.0017 (6)−0.0020 (5)−0.0001 (6)
C110.0193 (8)0.0288 (8)0.0184 (7)−0.0028 (6)0.0006 (6)0.0028 (6)
C120.0188 (8)0.0291 (8)0.0262 (8)−0.0014 (6)0.0017 (6)−0.0074 (7)
C130.0212 (8)0.0192 (8)0.0355 (9)−0.0010 (6)0.0000 (7)−0.0002 (6)
C140.0229 (8)0.0260 (8)0.0256 (8)−0.0031 (6)−0.0002 (6)0.0074 (6)
C150.0183 (8)0.0269 (8)0.0183 (7)−0.0018 (6)−0.0008 (6)−0.0014 (6)

Geometric parameters (Å, °)

F1—C111.3419 (17)C3—H30.9500
F2—C121.3439 (18)C4—C51.385 (2)
F3—C131.3381 (18)C4—H40.9500
F4—C141.3393 (17)C5—C61.390 (2)
F5—C151.3418 (17)C5—H50.9500
O1—C91.2313 (17)C6—H60.9500
N8—C91.3287 (19)C7—H7A0.9900
N8—C71.4596 (19)C7—H7B0.9900
N8—H80.876 (14)C9—C101.507 (2)
C1—C61.388 (2)C10—C151.384 (2)
C1—C21.394 (2)C10—C111.388 (2)
C1—C71.512 (2)C11—C121.377 (2)
C2—C31.383 (2)C12—C131.378 (2)
C2—H20.9500C13—C141.374 (2)
C3—C41.385 (2)C14—C151.380 (2)
C9—N8—C7121.84 (13)N8—C7—H7B108.8
C9—N8—H8118.6 (11)C1—C7—H7B108.8
C7—N8—H8119.4 (11)H7A—C7—H7B107.7
C6—C1—C2118.69 (14)O1—C9—N8124.59 (14)
C6—C1—C7122.99 (13)O1—C9—C10119.63 (13)
C2—C1—C7118.28 (13)N8—C9—C10115.78 (12)
C3—C2—C1120.92 (14)C15—C10—C11117.21 (14)
C3—C2—H2119.5C15—C10—C9122.86 (13)
C1—C2—H2119.5C11—C10—C9119.79 (13)
C2—C3—C4120.05 (14)F1—C11—C12118.15 (13)
C2—C3—H3120.0F1—C11—C10120.00 (14)
C4—C3—H3120.0C12—C11—C10121.84 (14)
C3—C4—C5119.56 (14)F2—C12—C11120.61 (14)
C3—C4—H4120.2F2—C12—C13119.90 (14)
C5—C4—H4120.2C11—C12—C13119.49 (14)
C4—C5—C6120.37 (14)F3—C13—C14120.15 (14)
C4—C5—H5119.8F3—C13—C12119.81 (14)
C6—C5—H5119.8C14—C13—C12120.04 (14)
C1—C6—C5120.40 (14)F4—C14—C13119.99 (14)
C1—C6—H6119.8F4—C14—C15120.27 (14)
C5—C6—H6119.8C13—C14—C15119.73 (14)
N8—C7—C1113.87 (12)F5—C15—C14118.18 (13)
N8—C7—H7A108.8F5—C15—C10120.08 (13)
C1—C7—H7A108.8C14—C15—C10121.69 (14)
C6—C1—C2—C3−0.8 (2)F1—C11—C12—F2−1.4 (2)
C7—C1—C2—C3177.02 (14)C10—C11—C12—F2179.65 (13)
C1—C2—C3—C40.7 (2)F1—C11—C12—C13178.39 (13)
C2—C3—C4—C50.0 (2)C10—C11—C12—C13−0.6 (2)
C3—C4—C5—C6−0.5 (2)F2—C12—C13—F3−0.3 (2)
C2—C1—C6—C50.3 (2)C11—C12—C13—F3179.87 (14)
C7—C1—C6—C5−177.44 (14)F2—C12—C13—C14−179.91 (14)
C4—C5—C6—C10.4 (2)C11—C12—C13—C140.3 (2)
C9—N8—C7—C1135.84 (15)F3—C13—C14—F4−0.3 (2)
C6—C1—C7—N8−19.9 (2)C12—C13—C14—F4179.26 (13)
C2—C1—C7—N8162.42 (14)F3—C13—C14—C15−179.20 (14)
C7—N8—C9—O1−0.4 (2)C12—C13—C14—C150.4 (2)
C7—N8—C9—C10178.57 (13)F4—C14—C15—F5−2.2 (2)
O1—C9—C10—C15−121.13 (16)C13—C14—C15—F5176.69 (13)
N8—C9—C10—C1559.85 (19)F4—C14—C15—C10−179.71 (13)
O1—C9—C10—C1154.5 (2)C13—C14—C15—C10−0.8 (2)
N8—C9—C10—C11−124.55 (15)C11—C10—C15—F5−176.90 (12)
C15—C10—C11—F1−178.80 (13)C9—C10—C15—F5−1.2 (2)
C9—C10—C11—F15.4 (2)C11—C10—C15—C140.5 (2)
C15—C10—C11—C120.1 (2)C9—C10—C15—C14176.25 (14)
C9—C10—C11—C12−175.70 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.88 (1)2.01 (1)2.875 (2)171 (2)
C5—H5···O1ii0.952.373.276 (2)158

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5380).

References

  • Albrecht, M., Müller, M., Mergel, O., Rissanen, K. & Valkonen, A. (2010). Chem. Eur. J.16, 5062–5069. [PubMed]
  • An, G. & Rhee, H. (2003). Synlett, pp. 876–878.
  • Bruker (2008). COLLECT Bruker AXS Inc., Delft, The Netherlands.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Cockroft, S. L., Perkins, J., Zonta, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem.5, 1062–1080. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Forbes, C. C., Beatty, A. M. & Smith, B. D. (2001). Org. Lett.3, 3595–3598. [PubMed]
  • Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o4114.
  • Liu, S.-L., Liang, E.-X., Yu, L.-C. & Huang, L. (2007). Z. Kristallogr. New Cryst. Struct.222, 433–434.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Müller, M., Albrecht, M., Gossen, V., Peters, T., Hoffmann, A., Raabe, G., Valkonen, A. & Rissanen, K. (2010). Chem. Eur. J. In the press. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Qadeer, G., Rama, N. H. & Wong, W.-Y. (2007). Acta Cryst. E63, o335–o336.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Q.-X. & Zhang, B.-S. (2008). Acta Cryst. E64, o884. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography