PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1463.
Published online 2010 October 23. doi:  10.1107/S1600536810042595
PMCID: PMC3009084

trans-Dichloridobis{[4-(dimethyl­amino)­phen­yl]diphenyl­phosphane}palladium(II)

Abstract

The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes with the Pd atom on a center of symmetry, resulting in a distorted trans-PdCl2P2 square-planar geometry. The Pd—P and Pd—Cl bond lengths are 2.3550 (7) and 2.2906 (7) Å, respectively. Some weak inter­actions are observed between the aromatic rings of adjacent mol­ecules, with an inter­planar distance between two π-stacked rings of 3.505 (3) Å. Intra- and intermolecular C—H(...)Cl hydrogen bonds also occur.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996 [triangle]). For related compounds, see: Burrow et al. (1994 [triangle]); DiMeglio et al. (1990 [triangle]); Edwards et al. (1998 [triangle]); Ferguson et al. (1982 [triangle]); Grushin et al. (1994 [triangle]); Kitano et al. (1983 [triangle]); Leznoff et al. (1999 [triangle]); Meij et al. (2003 [triangle]); Meijboom et al. (2006a [triangle],b [triangle]); Meijboom & Omondi (2010 [triangle]). For the synthesis of the starting materials, see: Drew & Doyle (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1463-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C20H20NP)2]
  • M r = 787.98
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1463-efi1.jpg
  • a = 9.9006 (16) Å
  • b = 9.9815 (15) Å
  • c = 10.4021 (14) Å
  • α = 86.291 (4)°
  • β = 69.135 (4)°
  • γ = 65.383 (4)°
  • V = 869.0 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 100 K
  • 0.18 × 0.10 × 0.04 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker; 2004 [triangle]) T min = 0.870, T max = 0.966
  • 10917 measured reflections
  • 4268 independent reflections
  • 3545 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.096
  • S = 1.05
  • 4268 reflections
  • 216 parameters
  • H-atom parameters constrained
  • Δρmax = 2.04 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042595/pk2275sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042595/pk2275Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

supplementary crystallographic information

Comment

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 93.84 (2) and P—Pd—Cli = 86.16 (2)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2955 (13) Å and a Pd—P bond length of 2.3398 (12) Å, fits well into the typical range for complexes of this kind. It is notable that the title compound crystallized as an unsolvated complex, as these type of PdII complexes tend to crystallize as solvates (Meijboom & Omondi, 2010).

Experimental

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of diphenyl(4-dimethylaminophenyl)phosphine (0.2 mmol) in dichloromethane (2.0 cm3) was added to a solution of [PdCl2(COD)] (0.1 mmol) in dichloromethane (3.0 cm3). Slow evaporation of the solvent gave yellow crystals of the title compound.

Refinement

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density

Figures

Fig. 1.
The structure (I), showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Accented lettering indicate atoms generated by symmetry (1 ...

Crystal data

[PdCl2(C20H20NP)2]Z = 1
Mr = 787.98F(000) = 404
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9006 (16) ÅCell parameters from 3426 reflections
b = 9.9815 (15) Åθ = 2.3–28.1°
c = 10.4021 (14) ŵ = 0.81 mm1
α = 86.291 (4)°T = 100 K
β = 69.135 (4)°Plate, yellow
γ = 65.383 (4)°0.18 × 0.1 × 0.04 mm
V = 869.0 (2) Å3

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer4268 independent reflections
Radiation source: fine-focus sealed tube3545 reflections with I > 2σ(I)
graphiteRint = 0.035
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.3°
[var phi] and ω scansh = −13→12
Absorption correction: multi-scan (SADABS; Bruker; 2004)k = −13→12
Tmin = 0.870, Tmax = 0.966l = −13→13
10917 measured reflections

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5716P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.04 e Å3
4268 reflectionsΔρmin = −0.72 e Å3
216 parameters

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 50 s/frame. A total of 604 frames were collected with a frame width of 0.5° covering up to θ = 28.28° with 99.0% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd0.50.50.50.01593 (10)
Cl0.62710 (9)0.24815 (7)0.44885 (7)0.02265 (16)
P0.29234 (9)0.49076 (7)0.69623 (6)0.01476 (15)
C110.2478 (3)0.6133 (3)0.8410 (2)0.0151 (5)
C120.0928 (3)0.7106 (3)0.9190 (3)0.0172 (5)
H120.00750.71630.89360.021*
C130.0600 (3)0.7997 (3)1.0331 (3)0.0172 (5)
H13−0.0470.86651.08360.021*
C140.1827 (3)0.7926 (3)1.0749 (3)0.0178 (6)
C150.3404 (3)0.6938 (3)0.9942 (3)0.0180 (6)
H150.42660.68571.01950.022*
C160.3700 (3)0.6091 (3)0.8791 (3)0.0186 (6)
H160.47710.54630.82450.022*
N0.1501 (3)0.8796 (3)1.1885 (3)0.0266 (6)
C1−0.0146 (4)0.9674 (3)1.2752 (3)0.0255 (6)
H1A−0.06911.03781.22040.038*
H1B−0.01811.02181.35230.038*
H1C−0.06790.9021.31130.038*
C20.2712 (4)0.8525 (4)1.2451 (3)0.0322 (7)
H2A0.31020.751.26840.048*
H2B0.2260.92021.32870.048*
H2C0.35970.86891.17680.048*
C210.3219 (3)0.3123 (3)0.7667 (3)0.0170 (5)
C220.3088 (3)0.2961 (3)0.9042 (3)0.0198 (6)
H220.28430.37880.96270.024*
C230.3316 (4)0.1597 (3)0.9563 (3)0.0250 (6)
H230.32190.14961.05020.03*
C240.3682 (4)0.0391 (3)0.8717 (4)0.0287 (7)
H240.3867−0.05470.90670.034*
C250.3781 (4)0.0548 (3)0.7352 (3)0.0264 (7)
H250.4008−0.02780.67760.032*
C260.3549 (3)0.1904 (3)0.6835 (3)0.0208 (6)
H260.36160.20050.59020.025*
C310.1021 (3)0.5480 (3)0.6741 (3)0.0171 (5)
C32−0.0064 (4)0.4905 (3)0.7501 (3)0.0206 (6)
H320.02250.41630.80950.025*
C33−0.1543 (4)0.5394 (3)0.7404 (3)0.0249 (6)
H33−0.22560.49790.7920.03*
C34−0.1998 (4)0.6491 (4)0.6554 (3)0.0275 (7)
H34−0.30230.68420.64950.033*
C35−0.0932 (4)0.7064 (4)0.5797 (3)0.0290 (7)
H35−0.12350.78170.52170.035*
C360.0567 (4)0.6564 (3)0.5868 (3)0.0238 (6)
H360.12890.69570.53230.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd0.02125 (18)0.01026 (15)0.01176 (14)−0.00809 (12)0.00111 (11)−0.00095 (10)
Cl0.0274 (4)0.0115 (3)0.0198 (3)−0.0082 (3)0.0023 (3)−0.0020 (2)
P0.0190 (4)0.0113 (3)0.0110 (3)−0.0080 (3)−0.0001 (3)−0.0002 (2)
C110.0219 (15)0.0096 (12)0.0116 (11)−0.0085 (11)−0.0013 (10)0.0007 (9)
C120.0181 (14)0.0165 (13)0.0155 (12)−0.0089 (12)−0.0025 (11)0.0003 (10)
C130.0159 (14)0.0130 (13)0.0156 (12)−0.0049 (11)0.0011 (10)−0.0024 (10)
C140.0227 (15)0.0111 (13)0.0165 (12)−0.0079 (11)−0.0025 (11)−0.0005 (10)
C150.0171 (14)0.0173 (14)0.0186 (12)−0.0079 (12)−0.0041 (11)−0.0005 (10)
C160.0186 (15)0.0143 (13)0.0177 (12)−0.0071 (11)−0.0003 (11)0.0001 (10)
N0.0215 (14)0.0294 (14)0.0234 (12)−0.0073 (12)−0.0032 (11)−0.0139 (10)
C10.0247 (17)0.0260 (16)0.0175 (13)−0.0061 (13)−0.0026 (12)−0.0067 (11)
C20.0291 (18)0.039 (2)0.0296 (16)−0.0137 (16)−0.0112 (14)−0.0086 (14)
C210.0169 (14)0.0135 (13)0.0169 (12)−0.0085 (11)0.0001 (11)0.0018 (10)
C220.0186 (15)0.0200 (14)0.0195 (13)−0.0090 (12)−0.0047 (11)0.0037 (11)
C230.0216 (16)0.0255 (16)0.0295 (15)−0.0125 (13)−0.0096 (13)0.0123 (13)
C240.0210 (16)0.0168 (15)0.0468 (19)−0.0091 (13)−0.0113 (14)0.0144 (14)
C250.0216 (16)0.0154 (14)0.0377 (17)−0.0096 (13)−0.0032 (13)−0.0012 (12)
C260.0206 (15)0.0155 (14)0.0225 (13)−0.0090 (12)−0.0016 (12)0.0000 (11)
C310.0227 (15)0.0137 (13)0.0129 (11)−0.0073 (11)−0.0042 (11)−0.0019 (10)
C320.0259 (16)0.0189 (14)0.0155 (12)−0.0099 (13)−0.0052 (11)0.0024 (10)
C330.0282 (17)0.0269 (16)0.0216 (14)−0.0152 (14)−0.0069 (13)0.0010 (12)
C340.0292 (18)0.0280 (17)0.0269 (15)−0.0102 (14)−0.0139 (13)−0.0001 (13)
C350.0373 (19)0.0247 (16)0.0285 (15)−0.0116 (15)−0.0184 (15)0.0074 (13)
C360.0331 (18)0.0219 (15)0.0183 (13)−0.0150 (14)−0.0077 (12)0.0040 (11)

Geometric parameters (Å, °)

Pd—Cli2.2906 (7)C2—H2B0.98
Pd—Cl2.2906 (7)C2—H2C0.98
Pd—Pi2.3550 (7)C21—C261.393 (4)
Pd—P2.3550 (7)C21—C221.395 (4)
P—C111.809 (3)C22—C231.391 (4)
P—C311.823 (3)C22—H220.95
P—C211.829 (3)C23—C241.379 (5)
C11—C161.385 (4)C23—H230.95
C11—C121.389 (4)C24—C251.391 (5)
C12—C131.388 (4)C24—H240.95
C12—H120.95C25—C261.382 (4)
C13—C141.404 (4)C25—H250.95
C13—H130.95C26—H260.95
C14—N1.372 (3)C31—C361.398 (4)
C14—C151.416 (4)C31—C321.400 (4)
C15—C161.382 (4)C32—C331.377 (4)
C15—H150.95C32—H320.95
C16—H160.95C33—C341.390 (4)
N—C21.438 (4)C33—H330.95
N—C11.451 (4)C34—C351.384 (5)
C1—H1A0.98C34—H340.95
C1—H1B0.98C35—C361.383 (4)
C1—H1C0.98C35—H350.95
C2—H2A0.98C36—H360.95
Cli—Pd—Cl180.0000 (10)H2A—C2—H2B109.5
Cli—Pd—Pi93.84 (2)N—C2—H2C109.5
Cl—Pd—Pi86.16 (2)H2A—C2—H2C109.5
Cli—Pd—P86.16 (2)H2B—C2—H2C109.5
Cl—Pd—P93.84 (2)C26—C21—C22118.8 (2)
Pi—Pd—P180.0000 (10)C26—C21—P120.1 (2)
C11—P—C31104.37 (12)C22—C21—P121.1 (2)
C11—P—C21104.02 (12)C23—C22—C21120.4 (3)
C31—P—C21102.69 (13)C23—C22—H22119.8
C11—P—Pd111.57 (9)C21—C22—H22119.8
C31—P—Pd114.91 (8)C24—C23—C22120.1 (3)
C21—P—Pd117.81 (9)C24—C23—H23120
C16—C11—C12118.0 (2)C22—C23—H23120
C16—C11—P119.9 (2)C23—C24—C25120.0 (3)
C12—C11—P122.1 (2)C23—C24—H24120
C13—C12—C11121.4 (3)C25—C24—H24120
C13—C12—H12119.3C26—C25—C24120.0 (3)
C11—C12—H12119.3C26—C25—H25120
C12—C13—C14120.9 (3)C24—C25—H25120
C12—C13—H13119.6C25—C26—C21120.7 (3)
C14—C13—H13119.6C25—C26—H26119.7
N—C14—C13120.9 (3)C21—C26—H26119.7
N—C14—C15121.8 (3)C36—C31—C32118.2 (3)
C13—C14—C15117.3 (2)C36—C31—P121.0 (2)
C16—C15—C14120.5 (3)C32—C31—P120.7 (2)
C16—C15—H15119.7C33—C32—C31121.2 (3)
C14—C15—H15119.7C33—C32—H32119.4
C15—C16—C11121.8 (3)C31—C32—H32119.4
C15—C16—H16119.1C32—C33—C34120.3 (3)
C11—C16—H16119.1C32—C33—H33119.8
C14—N—C2120.2 (3)C34—C33—H33119.8
C14—N—C1119.3 (3)C35—C34—C33118.8 (3)
C2—N—C1118.0 (2)C35—C34—H34120.6
N—C1—H1A109.5C33—C34—H34120.6
N—C1—H1B109.5C36—C35—C34121.4 (3)
H1A—C1—H1B109.5C36—C35—H35119.3
N—C1—H1C109.5C34—C35—H35119.3
H1A—C1—H1C109.5C35—C36—C31120.0 (3)
H1B—C1—H1C109.5C35—C36—H36120
N—C2—H2A109.5C31—C36—H36120
N—C2—H2B109.5
Cli—Pd—P—C11−44.26 (10)C31—P—C21—C2669.8 (3)
Cl—Pd—P—C11135.74 (10)Pd—P—C21—C26−57.5 (3)
Cli—Pd—P—C3174.28 (10)C11—P—C21—C22−0.3 (3)
Cl—Pd—P—C31−105.72 (10)C31—P—C21—C22−108.9 (2)
Cli—Pd—P—C21−164.46 (11)Pd—P—C21—C22123.7 (2)
Cl—Pd—P—C2115.54 (11)C26—C21—C22—C231.2 (4)
C31—P—C11—C16−174.3 (2)P—C21—C22—C23180.0 (2)
C21—P—C11—C1678.4 (2)C21—C22—C23—C240.4 (4)
Pd—P—C11—C16−49.7 (2)C22—C23—C24—C25−1.8 (5)
C31—P—C11—C127.3 (2)C23—C24—C25—C261.5 (5)
C21—P—C11—C12−100.1 (2)C24—C25—C26—C210.1 (5)
Pd—P—C11—C12131.93 (19)C22—C21—C26—C25−1.5 (4)
C16—C11—C12—C13−1.0 (4)P—C21—C26—C25179.7 (2)
P—C11—C12—C13177.4 (2)C11—P—C31—C3690.4 (2)
C11—C12—C13—C14−1.0 (4)C21—P—C31—C36−161.3 (2)
C12—C13—C14—N−179.3 (3)Pd—P—C31—C36−32.1 (3)
C12—C13—C14—C151.4 (4)C11—P—C31—C32−86.0 (2)
N—C14—C15—C16−179.0 (3)C21—P—C31—C3222.3 (2)
C13—C14—C15—C160.2 (4)Pd—P—C31—C32151.50 (19)
C14—C15—C16—C11−2.3 (4)C36—C31—C32—C33−0.4 (4)
C12—C11—C16—C152.7 (4)P—C31—C32—C33176.1 (2)
P—C11—C16—C15−175.8 (2)C31—C32—C33—C34−0.8 (4)
C13—C14—N—C2168.6 (3)C32—C33—C34—C350.9 (5)
C15—C14—N—C2−12.2 (4)C33—C34—C35—C360.2 (5)
C13—C14—N—C17.0 (4)C34—C35—C36—C31−1.4 (5)
C15—C14—N—C1−173.8 (3)C32—C31—C36—C351.5 (4)
C11—P—C21—C26178.4 (2)P—C31—C36—C35−175.0 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C25—H25···Clii0.952.793.710 (3)163
C26—H26···Cl0.952.743.159 (3)108
C36—H36···Cli0.952.773.529 (3)138

Symmetry codes: (ii) −x+1, −y, −z+1; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2275).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burrow, R. A., Farrar, D. H. & Honeyman, C. H. (1994). Acta Cryst. C50, 681–683.
  • DiMeglio, C. M., Luck, L. A., Rithner, C. D., Rheingold, A. L., Elcesser, W. L., Hubbard, J. L. & Bushweller, C. H. (1990). J. Phys. Chem.94, 6255–6263.
  • Drew, D. & Doyle, J. R. (1990). Inorg. Synth.28, 346–349.
  • Edwards, D. A., Mahon, M. F. & Paget, T. J. (1998). Polyhedron, 17, 4121–4130.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.
  • Grushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem.33, 4804–4806.
  • Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017.
  • Leznoff, D. B., Rancurel, C., Sutter, J., Rettig, S. J., Pink, M. & Kahn, O. (1999). Organometallics, 18, 5097–5102.
  • Meij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44–m45.
  • Meijboom, R., Muller, A. & Roodt, A. (2006b). Acta Cryst. E62, m1603–m1605.
  • Meijboom, R., Muller, A., Roodt, A. & Janse van Rensburg, J. M. (2006a). Acta Cryst. E62, m894–m896.
  • Meijboom, R. & Omondi, B. (2010). Acta Cryst. B66 Submitted.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography