PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1449.
Published online 2010 October 23. doi:  10.1107/S1600536810042285
PMCID: PMC3009076

Acetonitrile­bis­(2,9-dimethyl-1,10-phen­an­throline)copper(II) bis­(tetra­fluorido­borate)

Abstract

The title compound, [Cu(CH3CN)(C12H12N2)2](BF4)2, crystallizes with two copper-containing cations and four tetra­fluoro­borate anions in the asymmetric unit. The structure represents a second crystal form of the salt, the first being an acetonitrile solvate [Watton (2009 [triangle]). Acta Cryst. E65, m585–m586]. The complex cation has a distorted trigonal-bipyramidal geometry, whereas the previous structure exhibits a distorted square-pyramidal geometry. One of the four BF4 counter-ions is disordered, with a refined site occupancy of 0.8615 (17):0.1385 (17).

Related literature

For the acetonitrile solvate structure, see: Watton (2009 [triangle]). For geometrical analysis, see: Addison et al. (1984 [triangle]); Holmes (1984 [triangle]); Watton (2010 [triangle]). For electrochemical behaviour of similar complexes, see: James & Williams (1961 [triangle]). For the characteristic colour of four-coordinate Cu(II) species, see: Miller et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1449-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3N)(C12H12N2)2](BF4)2
  • M r = 694.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1449-efi1.jpg
  • a = 14.7973 (3) Å
  • b = 18.5356 (3) Å
  • c = 22.5770 (4) Å
  • β = 105.2524 (18)°
  • V = 5974.23 (19) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Oxford Diffraction Sapphire 3 diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.765, T max = 1.000
  • 40609 measured reflections
  • 19629 independent reflections
  • 13249 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.122
  • S = 1.07
  • 19629 reflections
  • 855 parameters
  • 30 restraints
  • H-atom parameters constrained
  • Δρmax = 1.06 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042285/fj2351sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042285/fj2351Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The structure was obtained as part of a study of how substituents at the 2- and 9- positions of the phenanthroline ligand affect the behavior of the copper complexes. The crystal was obtained during an attempt to prepare a larger amount of the previously reported complex (Watton, 2009), which differs from the current structure in that it contains two molecules of acetonitrile per cation in the crystal lattice, while the current form is unsolvated. The appearance of this new crystal form was unexpected, and it is not fully understood how the preparative conditions affect the particular crystal form that is obtained. This aspect of the chemistry is currently under study.

The two crystal forms of the cation differ significantly in their structures. There is substantial distortion from idealized geometry in both cases, as would be expected from the small bite-angle of the phen ligand. The previous compund is best described as having a distorted square pyramidal geometry at copper; the τ descriptor of Addison et al. (Addison, 1984), has a value of 0.24 (where τ = 0 for ideal square planar geometry and τ = 1 for trigonal bipyramidal),and the analysis of Holmes (Holmes, 1984) indicates that the structure is 73% along the Berry pseudorotation coordinate (D3h —> C2v —> C4v). By contrast, the current stucture is much closer to tbp (τ =. 63 and 0.72 for the two cations, 34.8% and 27.8% along pseudorotation coordinate). It is noted that a less sterically demanding ligand, 2-methylphenanthroline, affords a structure that is essentially tbp (τ = 0.9, 8.2%)(Watton, 2010). The distortions from idealized geometry in both crystal forms of [Cu(2,9-DMP)2]2+ are consistent with the observation that the 2,9-dimethyl substituents destabilize the 5-coordinate cupric form of the bis-phenanthroline complex with respect to the less sterically hindered 4-coordinate cuprous form, as manifested in the more favorable reduction potential of the dimethyl complex with respect to the unsubstituted analog (James, 1961). The steric strain results in quite different distortions within the two structures, however. Whereas the solvated structure exhibits substantial bowing of the phen ligands from the ideal planar geometry of an aromatic polycyclic ligand, no such bowing is observed in the present structure. In both cases, the copper ions lie out of the plane of the phenanthroline ligands, but the average deviation of the copper ions from the least-squares planes of the ligands is significantly greater (average = 0.55 (18) A) in the previous structure than it is in the current one (average = 0.29 (1) A). Apparently to offset these lesser distortions in the current structure, there is a significant deviation of the coordinated acetonitrile ligand from the expected linear geometry (Cu—N—C = 163.5°); the solvated structure showed far less distortion (Cu—N—C = 173.4 °). Interestingly, this apparent destabilization of the Cu-acetonitrile bond results in a difference in chemical properties for the two crystal forms: While the solvated crystals are stable for extended periods of time when removed from the mother liquor, the unsolvated crystals undergo what appears to be a rapid deliquescence, which is accompanied by a change in color from green to purple. Previous studies (Miller, 1998) have shown this color to be characteristic of the unusual four-coordinate Cu(II) species. Further study of this interesting behavior is in progress.

Figures

Fig. 1.
ORTEP of Cation 1 showing atom numbering scheme. Hydrogen atoms omitted for clarity and thermal ellipsoids drawn at 50% probability level.
Fig. 2.
ORTEP of Cation 2 showing atom numbering scheme. Hydrogen atoms omitted for clarity and thermal ellipsoids drawn at 50% probability level.

Crystal data

[Cu(C2H3N)(C12H12N2)2](BF4)2F(000) = 2824
Mr = 694.72Dx = 1.545 Mg m3
Monoclinic, P21/cMelting point: 573 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.7973 (3) ÅCell parameters from 19467 reflections
b = 18.5356 (3) Åθ = 4.3–32.6°
c = 22.5770 (4) ŵ = 0.81 mm1
β = 105.2524 (18)°T = 293 K
V = 5974.23 (19) Å3Block, green
Z = 80.20 × 0.20 × 0.15 mm

Data collection

Oxford Diffraction Sapphire 3 diffractometer19629 independent reflections
Radiation source: fine-focus sealed tube13249 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 32.7°, θmin = 4.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)h = −21→19
Tmin = 0.765, Tmax = 1.000k = −22→28
40609 measured reflectionsl = −31→34

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0659P)2 + 0.084P] where P = (Fo2 + 2Fc2)/3
19629 reflections(Δ/σ)max = 0.002
855 parametersΔρmax = 1.06 e Å3
30 restraintsΔρmin = −0.88 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.084941 (15)0.276621 (12)0.343942 (10)0.01537 (6)
N1−0.00314 (10)0.21950 (8)0.27929 (7)0.0154 (3)
N2−0.03933 (11)0.33834 (8)0.33783 (7)0.0162 (3)
N30.10759 (11)0.20701 (8)0.41990 (7)0.0171 (3)
N40.18867 (11)0.33074 (8)0.40062 (7)0.0169 (3)
N50.15524 (13)0.29072 (10)0.27572 (8)0.0279 (4)
C10.01772 (13)0.15984 (10)0.25236 (8)0.0183 (4)
C2−0.04581 (14)0.13204 (11)0.19916 (9)0.0219 (4)
H2−0.02980.09130.18010.026*
C3−0.13060 (14)0.16454 (11)0.17550 (9)0.0217 (4)
H3−0.17230.14580.14060.026*
C4−0.15453 (13)0.22663 (10)0.20424 (8)0.0182 (3)
C5−0.24262 (14)0.26302 (11)0.18386 (9)0.0229 (4)
H5−0.28660.24650.14910.028*
C6−0.26277 (14)0.32106 (11)0.21441 (9)0.0235 (4)
H6−0.32050.34380.20040.028*
C7−0.19627 (13)0.34786 (10)0.26804 (8)0.0187 (4)
C8−0.21440 (14)0.40614 (10)0.30333 (9)0.0215 (4)
H8−0.27230.42910.29250.026*
C9−0.14640 (14)0.42887 (10)0.35361 (9)0.0214 (4)
H9−0.15810.46760.37670.026*
C10−0.05858 (13)0.39375 (10)0.37051 (8)0.0180 (3)
C11−0.10760 (12)0.31515 (9)0.28789 (8)0.0154 (3)
C12−0.08763 (12)0.25267 (10)0.25616 (8)0.0151 (3)
C130.10864 (14)0.12258 (11)0.27908 (9)0.0222 (4)
H13A0.14070.14580.31680.033*
H13B0.14670.12490.25060.033*
H13C0.09710.07300.28710.033*
C140.01427 (14)0.41765 (11)0.42699 (9)0.0239 (4)
H14A0.04290.37610.44970.036*
H14B−0.01480.44640.45220.036*
H14C0.06120.44570.41520.036*
C150.06095 (15)0.14918 (11)0.43189 (9)0.0229 (4)
C160.09939 (18)0.10427 (12)0.48283 (10)0.0308 (5)
H160.06680.06360.48960.037*
C170.18394 (18)0.12024 (12)0.52207 (9)0.0320 (5)
H170.20950.09000.55510.038*
C180.23232 (15)0.18202 (11)0.51279 (9)0.0248 (4)
C190.31869 (16)0.20535 (13)0.55351 (9)0.0303 (5)
H190.34670.17750.58770.036*
C200.35999 (15)0.26690 (13)0.54312 (9)0.0311 (5)
H200.41670.28040.56990.037*
C210.31817 (13)0.31238 (11)0.49134 (9)0.0237 (4)
C220.35496 (14)0.37909 (13)0.48009 (10)0.0293 (5)
H220.41110.39550.50570.035*
C230.30806 (15)0.41974 (12)0.43140 (11)0.0290 (5)
H230.33190.46450.42460.035*
C240.22373 (14)0.39501 (11)0.39107 (9)0.0228 (4)
C250.23381 (13)0.29031 (10)0.45008 (8)0.0182 (4)
C260.19076 (13)0.22427 (10)0.46050 (8)0.0184 (4)
C27−0.03382 (16)0.13256 (12)0.39053 (10)0.0299 (5)
H27A−0.06690.17680.37760.045*
H27B−0.06840.10370.41230.045*
H27C−0.02680.10650.35520.045*
C280.17413 (17)0.43980 (12)0.33721 (11)0.0323 (5)
H28A0.20480.43470.30490.048*
H28B0.17540.48950.34930.048*
H28C0.11030.42390.32290.048*
C290.17157 (15)0.30088 (12)0.22990 (10)0.0259 (4)
C300.19169 (18)0.31546 (13)0.17158 (10)0.0340 (5)
H30A0.15360.35490.15160.051*
H30B0.17810.27330.14600.051*
H30C0.25660.32780.17850.051*
Cu20.389985 (16)0.691709 (13)0.105797 (10)0.01934 (6)
N60.40860 (12)0.80441 (10)0.10026 (7)0.0220 (3)
N70.27073 (11)0.71383 (9)0.04267 (7)0.0196 (3)
N80.47331 (11)0.63926 (9)0.05485 (7)0.0179 (3)
N90.49699 (12)0.66233 (9)0.17556 (7)0.0220 (3)
N100.30781 (12)0.63636 (10)0.15327 (9)0.0301 (4)
C310.47989 (15)0.84849 (12)0.12578 (9)0.0258 (4)
C320.46991 (17)0.92389 (13)0.12152 (10)0.0329 (5)
H320.51950.95340.14140.040*
C330.38771 (17)0.95422 (12)0.08832 (10)0.0312 (5)
H330.38131.00410.08580.037*
C340.31299 (16)0.90937 (11)0.05798 (9)0.0250 (4)
C350.22656 (17)0.93593 (12)0.01946 (10)0.0291 (5)
H350.21770.98540.01410.035*
C360.15750 (16)0.89042 (12)−0.00933 (9)0.0281 (4)
H360.10190.9090−0.03400.034*
C370.16900 (14)0.81373 (11)−0.00228 (9)0.0237 (4)
C380.10079 (15)0.76359 (13)−0.03216 (10)0.0291 (5)
H380.04350.7795−0.05670.035*
C390.11933 (15)0.69138 (12)−0.02494 (10)0.0281 (4)
H390.07470.6581−0.04500.034*
C400.20568 (14)0.66717 (11)0.01275 (9)0.0231 (4)
C410.25367 (14)0.78642 (10)0.03519 (9)0.0201 (4)
C420.32663 (14)0.83454 (11)0.06588 (9)0.0209 (4)
C430.57260 (16)0.81640 (14)0.15865 (11)0.0346 (5)
H43A0.57150.80300.19950.052*
H43B0.62130.85120.16060.052*
H43C0.58440.77440.13690.052*
C440.22558 (15)0.58754 (11)0.01864 (11)0.0288 (5)
H44A0.29170.58000.03480.043*
H44B0.20500.5652−0.02100.043*
H44C0.19280.56660.04590.043*
C450.46565 (14)0.63376 (11)−0.00539 (9)0.0214 (4)
C460.52727 (15)0.59019 (11)−0.02811 (9)0.0244 (4)
H460.51920.5858−0.07020.029*
C470.59841 (15)0.55459 (11)0.01151 (10)0.0258 (4)
H470.63910.5261−0.00350.031*
C480.61049 (13)0.56075 (10)0.07503 (10)0.0217 (4)
C490.68461 (14)0.52621 (11)0.11996 (11)0.0281 (5)
H490.72670.49670.10720.034*
C500.69392 (14)0.53596 (11)0.18022 (11)0.0300 (5)
H500.74170.51210.20850.036*
C510.63208 (14)0.58223 (11)0.20202 (10)0.0251 (4)
C520.64206 (16)0.59802 (12)0.26422 (10)0.0325 (5)
H520.68960.57650.29430.039*
C530.58196 (18)0.64482 (13)0.28023 (10)0.0344 (5)
H530.58930.65570.32140.041*
C540.50824 (16)0.67732 (12)0.23509 (9)0.0279 (5)
C550.55759 (13)0.61575 (10)0.15911 (9)0.0195 (4)
C560.54592 (13)0.60427 (10)0.09476 (9)0.0179 (3)
C570.39157 (16)0.67533 (13)−0.05023 (9)0.0297 (5)
H57A0.33450.6479−0.06060.045*
H57B0.41160.6844−0.08670.045*
H57C0.38100.7204−0.03220.045*
C580.44347 (19)0.72961 (14)0.25291 (11)0.0375 (6)
H58A0.40540.75250.21680.056*
H58B0.47930.76550.27970.056*
H58C0.40400.70450.27370.056*
C590.27828 (14)0.59525 (12)0.18046 (10)0.0264 (4)
C600.24070 (17)0.54244 (13)0.21520 (11)0.0338 (5)
H60A0.17940.52790.19190.051*
H60B0.23670.56340.25330.051*
H60C0.28120.50110.22340.051*
B10.14194 (16)0.37274 (12)0.59292 (10)0.0216 (4)
F10.12278 (9)0.31320 (6)0.55422 (6)0.0299 (3)
F20.15876 (12)0.35016 (8)0.65311 (6)0.0456 (4)
F30.06508 (11)0.41852 (8)0.58040 (8)0.0512 (4)
F40.22077 (11)0.40904 (8)0.58686 (8)0.0469 (4)
B20.39281 (17)0.60964 (13)0.40230 (11)0.0255 (5)
F50.33071 (12)0.57495 (9)0.35454 (8)0.0605 (5)
F60.44297 (10)0.55965 (8)0.44397 (8)0.0523 (5)
F70.33939 (13)0.65099 (9)0.43110 (7)0.0565 (5)
F80.44967 (13)0.65558 (14)0.38094 (8)0.0811 (7)
B30.98516 (18)0.44247 (14)0.15311 (12)0.0312 (5)
F91.02798 (10)0.48400 (8)0.20389 (6)0.0405 (3)
F100.98237 (12)0.37088 (8)0.16878 (8)0.0501 (4)
F110.89527 (11)0.46847 (9)0.12734 (8)0.0576 (5)
F121.03623 (13)0.44934 (8)0.10927 (7)0.0522 (4)
B40.4382 (2)0.44043 (18)0.18722 (13)0.0285 (7)0.8615 (17)
F130.52285 (13)0.41538 (11)0.17988 (8)0.0520 (5)0.8615 (17)
F140.45417 (14)0.49308 (11)0.23150 (9)0.0548 (5)0.8615 (17)
F150.39075 (18)0.38431 (14)0.20358 (14)0.0916 (10)0.8615 (17)
F160.38341 (16)0.46846 (12)0.13232 (8)0.0597 (6)0.8615 (17)
B4A0.4575 (11)0.4282 (10)0.2016 (7)0.0285 (7)0.1385 (17)
F13A0.5483 (7)0.4392 (7)0.2375 (5)0.0520 (5)0.1385 (17)
F14A0.4001 (8)0.4306 (7)0.2415 (5)0.0548 (5)0.1385 (17)
F15A0.4589 (11)0.3639 (7)0.1725 (7)0.0916 (10)0.1385 (17)
F16A0.4292 (10)0.4821 (8)0.1576 (5)0.0597 (6)0.1385 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01123 (10)0.01830 (11)0.01463 (10)−0.00064 (8)−0.00004 (7)0.00094 (8)
N10.0135 (7)0.0177 (7)0.0147 (6)0.0018 (6)0.0031 (5)0.0010 (6)
N20.0138 (7)0.0181 (7)0.0157 (7)−0.0008 (6)0.0020 (5)0.0006 (6)
N30.0175 (7)0.0187 (7)0.0154 (7)0.0014 (6)0.0051 (6)0.0006 (6)
N40.0131 (7)0.0185 (7)0.0180 (7)−0.0015 (6)0.0025 (6)−0.0015 (6)
N50.0222 (9)0.0385 (10)0.0216 (8)−0.0094 (7)0.0032 (7)−0.0013 (7)
C10.0174 (9)0.0192 (9)0.0190 (8)−0.0002 (7)0.0059 (7)0.0015 (7)
C20.0228 (10)0.0211 (9)0.0216 (9)0.0002 (8)0.0055 (7)−0.0038 (7)
C30.0211 (9)0.0232 (9)0.0185 (8)−0.0040 (8)0.0010 (7)−0.0031 (7)
C40.0171 (8)0.0190 (9)0.0161 (8)−0.0003 (7)0.0000 (6)−0.0002 (7)
C50.0179 (9)0.0242 (10)0.0209 (9)−0.0012 (7)−0.0052 (7)0.0003 (7)
C60.0148 (9)0.0249 (10)0.0253 (9)0.0033 (7)−0.0043 (7)0.0021 (8)
C70.0145 (8)0.0187 (9)0.0210 (8)0.0019 (7)0.0014 (7)0.0032 (7)
C80.0171 (9)0.0198 (9)0.0261 (9)0.0052 (7)0.0032 (7)0.0024 (8)
C90.0231 (9)0.0183 (9)0.0226 (9)0.0044 (8)0.0055 (7)−0.0014 (7)
C100.0184 (9)0.0172 (8)0.0173 (8)0.0003 (7)0.0027 (7)0.0010 (7)
C110.0133 (8)0.0167 (8)0.0148 (7)−0.0001 (6)0.0009 (6)0.0017 (6)
C120.0135 (8)0.0157 (8)0.0149 (7)0.0000 (6)0.0015 (6)0.0018 (6)
C130.0187 (9)0.0243 (10)0.0241 (9)0.0067 (8)0.0063 (7)0.0003 (8)
C140.0226 (10)0.0245 (10)0.0220 (9)0.0023 (8)0.0010 (7)−0.0059 (8)
C150.0299 (11)0.0206 (9)0.0220 (9)−0.0009 (8)0.0135 (8)−0.0007 (7)
C160.0479 (14)0.0213 (10)0.0282 (10)0.0020 (10)0.0190 (10)0.0039 (8)
C170.0522 (15)0.0266 (11)0.0191 (9)0.0173 (10)0.0125 (9)0.0055 (8)
C180.0311 (11)0.0277 (10)0.0145 (8)0.0160 (9)0.0044 (7)−0.0007 (7)
C190.0315 (11)0.0378 (12)0.0171 (9)0.0219 (10)−0.0016 (8)−0.0026 (8)
C200.0185 (10)0.0506 (14)0.0188 (9)0.0160 (9)−0.0045 (7)−0.0125 (9)
C210.0145 (9)0.0343 (11)0.0208 (9)0.0048 (8)0.0018 (7)−0.0129 (8)
C220.0152 (9)0.0424 (13)0.0299 (10)−0.0038 (9)0.0049 (8)−0.0180 (10)
C230.0230 (10)0.0279 (11)0.0398 (12)−0.0114 (9)0.0147 (9)−0.0133 (9)
C240.0197 (9)0.0236 (9)0.0274 (10)−0.0028 (8)0.0102 (8)−0.0038 (8)
C250.0144 (8)0.0228 (9)0.0167 (8)0.0045 (7)0.0027 (6)−0.0066 (7)
C260.0181 (9)0.0205 (9)0.0155 (8)0.0074 (7)0.0025 (6)−0.0022 (7)
C270.0331 (12)0.0303 (11)0.0296 (10)−0.0131 (9)0.0144 (9)−0.0023 (9)
C280.0337 (12)0.0231 (10)0.0419 (13)−0.0039 (9)0.0132 (10)0.0066 (9)
C290.0227 (10)0.0299 (10)0.0244 (9)−0.0084 (8)0.0052 (8)−0.0034 (8)
C300.0423 (14)0.0395 (13)0.0254 (10)−0.0071 (11)0.0180 (10)−0.0009 (9)
Cu20.01406 (11)0.02553 (13)0.01898 (11)0.00282 (9)0.00535 (8)0.00247 (9)
N60.0189 (8)0.0301 (9)0.0178 (7)−0.0011 (7)0.0060 (6)0.0043 (7)
N70.0153 (7)0.0230 (8)0.0218 (7)0.0026 (6)0.0075 (6)−0.0013 (6)
N80.0126 (7)0.0236 (8)0.0174 (7)0.0002 (6)0.0038 (6)0.0034 (6)
N90.0208 (8)0.0271 (8)0.0179 (7)−0.0022 (7)0.0046 (6)0.0041 (7)
N100.0184 (8)0.0386 (10)0.0336 (10)0.0034 (8)0.0074 (7)0.0125 (8)
C310.0241 (10)0.0348 (11)0.0190 (9)−0.0086 (9)0.0065 (8)0.0044 (8)
C320.0379 (13)0.0366 (12)0.0248 (10)−0.0145 (10)0.0090 (9)0.0012 (9)
C330.0428 (13)0.0244 (10)0.0286 (10)−0.0071 (10)0.0134 (10)0.0024 (9)
C340.0315 (11)0.0248 (10)0.0213 (9)0.0007 (8)0.0119 (8)0.0035 (8)
C350.0360 (12)0.0264 (10)0.0273 (10)0.0088 (9)0.0122 (9)0.0078 (9)
C360.0277 (11)0.0328 (11)0.0243 (9)0.0118 (9)0.0077 (8)0.0073 (9)
C370.0202 (9)0.0310 (11)0.0206 (9)0.0074 (8)0.0064 (7)0.0032 (8)
C380.0173 (9)0.0431 (13)0.0251 (10)0.0065 (9)0.0024 (8)0.0010 (9)
C390.0175 (9)0.0361 (12)0.0294 (10)0.0003 (9)0.0037 (8)−0.0063 (9)
C400.0169 (9)0.0265 (10)0.0277 (10)0.0010 (8)0.0091 (7)−0.0040 (8)
C410.0182 (9)0.0231 (9)0.0204 (8)0.0037 (7)0.0077 (7)0.0013 (7)
C420.0207 (9)0.0255 (9)0.0177 (8)0.0013 (8)0.0072 (7)0.0027 (7)
C430.0228 (11)0.0468 (14)0.0307 (11)−0.0119 (10)0.0008 (9)0.0114 (10)
C440.0233 (10)0.0240 (10)0.0401 (12)0.0014 (8)0.0105 (9)−0.0064 (9)
C450.0177 (9)0.0257 (10)0.0214 (9)−0.0038 (7)0.0064 (7)0.0022 (8)
C460.0281 (11)0.0238 (10)0.0256 (9)−0.0064 (8)0.0149 (8)−0.0022 (8)
C470.0244 (10)0.0202 (9)0.0389 (11)−0.0034 (8)0.0192 (9)−0.0026 (9)
C480.0131 (8)0.0173 (9)0.0360 (11)−0.0020 (7)0.0090 (8)0.0017 (8)
C490.0139 (9)0.0216 (10)0.0482 (13)0.0013 (7)0.0069 (9)0.0050 (9)
C500.0128 (9)0.0232 (10)0.0478 (13)−0.0012 (7)−0.0029 (8)0.0110 (9)
C510.0166 (9)0.0235 (10)0.0305 (10)−0.0066 (8)−0.0021 (8)0.0083 (8)
C520.0300 (12)0.0310 (11)0.0270 (10)−0.0095 (9)−0.0093 (9)0.0090 (9)
C530.0420 (14)0.0385 (13)0.0176 (9)−0.0142 (11)−0.0012 (9)0.0019 (9)
C540.0333 (12)0.0307 (11)0.0203 (9)−0.0087 (9)0.0082 (8)0.0011 (8)
C550.0133 (8)0.0227 (9)0.0208 (8)−0.0042 (7)0.0013 (7)0.0039 (7)
C560.0115 (8)0.0193 (8)0.0228 (8)−0.0024 (7)0.0043 (7)0.0023 (7)
C570.0268 (11)0.0416 (13)0.0195 (9)0.0035 (9)0.0042 (8)0.0065 (9)
C580.0497 (15)0.0414 (13)0.0269 (11)−0.0018 (12)0.0201 (11)−0.0033 (10)
C590.0161 (9)0.0357 (11)0.0272 (10)0.0022 (8)0.0051 (8)0.0062 (9)
C600.0294 (12)0.0408 (13)0.0340 (11)−0.0063 (10)0.0132 (9)0.0082 (10)
B10.0192 (10)0.0226 (10)0.0212 (10)0.0004 (8)0.0023 (8)−0.0028 (8)
F10.0321 (7)0.0260 (6)0.0290 (6)0.0022 (5)0.0038 (5)−0.0085 (5)
F20.0631 (10)0.0495 (9)0.0227 (6)−0.0056 (8)0.0088 (7)0.0003 (6)
F30.0365 (8)0.0397 (8)0.0613 (10)0.0185 (7)−0.0156 (7)−0.0226 (7)
F40.0479 (9)0.0371 (8)0.0653 (10)−0.0168 (7)0.0318 (8)−0.0054 (7)
B20.0199 (11)0.0285 (12)0.0270 (11)−0.0070 (9)0.0044 (9)−0.0062 (9)
F50.0423 (9)0.0589 (10)0.0617 (11)−0.0101 (8)−0.0191 (8)−0.0202 (9)
F60.0285 (8)0.0289 (7)0.0799 (12)0.0035 (6)−0.0205 (8)−0.0045 (7)
F70.0745 (12)0.0604 (10)0.0370 (8)0.0303 (9)0.0188 (8)0.0061 (8)
F80.0508 (11)0.1460 (19)0.0461 (10)−0.0541 (12)0.0120 (8)0.0185 (11)
B30.0258 (12)0.0322 (13)0.0323 (12)0.0063 (10)0.0019 (10)−0.0033 (11)
F90.0326 (8)0.0498 (8)0.0341 (7)−0.0024 (6)0.0000 (6)−0.0082 (6)
F100.0499 (10)0.0353 (8)0.0658 (11)−0.0008 (7)0.0165 (8)0.0064 (8)
F110.0312 (8)0.0655 (11)0.0608 (10)0.0144 (8)−0.0152 (7)−0.0131 (9)
F120.0736 (12)0.0443 (9)0.0484 (9)0.0118 (8)0.0331 (9)0.0023 (7)
B40.0280 (16)0.0347 (17)0.0206 (15)−0.0020 (13)0.0024 (12)−0.0024 (13)
F130.0415 (11)0.0712 (13)0.0447 (10)0.0222 (10)0.0139 (8)0.0047 (9)
F140.0473 (11)0.0650 (12)0.0449 (10)0.0035 (9)−0.0004 (9)−0.0260 (9)
F150.0612 (16)0.0842 (17)0.120 (2)−0.0425 (14)0.0068 (15)0.0368 (17)
F160.0703 (15)0.0779 (14)0.0236 (9)0.0466 (12)−0.0008 (9)−0.0059 (9)
B4A0.0280 (16)0.0347 (17)0.0206 (15)−0.0020 (13)0.0024 (12)−0.0024 (13)
F13A0.0415 (11)0.0712 (13)0.0447 (10)0.0222 (10)0.0139 (8)0.0047 (9)
F14A0.0473 (11)0.0650 (12)0.0449 (10)0.0035 (9)−0.0004 (9)−0.0260 (9)
F15A0.0612 (16)0.0842 (17)0.120 (2)−0.0425 (14)0.0068 (15)0.0368 (17)
F16A0.0703 (15)0.0779 (14)0.0236 (9)0.0466 (12)−0.0008 (9)−0.0059 (9)

Geometric parameters (Å, °)

Cu1—N11.9872 (15)N8—C561.370 (2)
Cu1—N41.9915 (15)N9—C541.339 (3)
Cu1—N52.0895 (19)N9—C551.365 (3)
Cu1—N32.1013 (15)N10—C591.136 (3)
Cu1—N22.1391 (16)C31—C321.406 (3)
N1—C11.337 (2)C31—C431.500 (3)
N1—C121.368 (2)C32—C331.370 (3)
N2—C101.338 (2)C32—H320.9300
N2—C111.370 (2)C33—C341.409 (3)
N3—C151.341 (3)C33—H330.9300
N3—C261.365 (2)C34—C421.406 (3)
N4—C241.339 (3)C34—C351.431 (3)
N4—C251.365 (2)C35—C361.352 (3)
N5—C291.138 (3)C35—H350.9300
C1—C21.413 (3)C36—C371.435 (3)
C1—C131.491 (3)C36—H360.9300
C2—C31.367 (3)C37—C381.407 (3)
C2—H20.9300C37—C411.408 (3)
C3—C41.411 (3)C38—C391.367 (3)
C3—H30.9300C38—H380.9300
C4—C121.406 (2)C39—C401.409 (3)
C4—C51.432 (3)C39—H390.9300
C5—C61.353 (3)C40—C441.504 (3)
C5—H50.9300C41—C421.431 (3)
C6—C71.433 (3)C43—H43A0.9600
C6—H60.9300C43—H43B0.9600
C7—C111.407 (2)C43—H43C0.9600
C7—C81.409 (3)C44—H44A0.9600
C8—C91.370 (3)C44—H44B0.9600
C8—H80.9300C44—H44C0.9600
C9—C101.413 (3)C45—C461.412 (3)
C9—H90.9300C45—C571.495 (3)
C10—C141.504 (3)C46—C471.359 (3)
C11—C121.433 (3)C46—H460.9300
C13—H13A0.9600C47—C481.402 (3)
C13—H13B0.9600C47—H470.9300
C13—H13C0.9600C48—C561.409 (3)
C14—H14A0.9600C48—C491.434 (3)
C14—H14B0.9600C49—C501.343 (3)
C14—H14C0.9600C49—H490.9300
C15—C161.412 (3)C50—C511.432 (3)
C15—C271.498 (3)C50—H500.9300
C16—C171.362 (3)C51—C521.404 (3)
C16—H160.9300C51—C551.406 (3)
C17—C181.395 (3)C52—C531.358 (4)
C17—H170.9300C52—H520.9300
C18—C261.415 (3)C53—C541.417 (3)
C18—C191.431 (3)C53—H530.9300
C19—C201.344 (4)C54—C581.491 (3)
C19—H190.9300C55—C561.433 (3)
C20—C211.442 (3)C57—H57A0.9600
C20—H200.9300C57—H57B0.9600
C21—C221.401 (3)C57—H57C0.9600
C21—C251.408 (3)C58—H58A0.9600
C22—C231.363 (3)C58—H58B0.9600
C22—H220.9300C58—H58C0.9600
C23—C241.414 (3)C59—C601.453 (3)
C23—H230.9300C60—H60A0.9600
C24—C281.495 (3)C60—H60B0.9600
C25—C261.428 (3)C60—H60C0.9600
C27—H27A0.9600B1—F21.381 (3)
C27—H27B0.9600B1—F41.384 (3)
C27—H27C0.9600B1—F31.387 (3)
C28—H28A0.9600B1—F11.390 (2)
C28—H28B0.9600B2—F81.371 (3)
C28—H28C0.9600B2—F51.378 (3)
C29—C301.450 (3)B2—F71.380 (3)
C30—H30A0.9600B2—F61.388 (3)
C30—H30B0.9600B3—F101.377 (3)
C30—H30C0.9600B3—F91.388 (3)
Cu2—N91.9931 (16)B3—F111.390 (3)
Cu2—N71.9976 (16)B3—F121.400 (3)
Cu2—N102.0894 (19)B4—F151.359 (4)
Cu2—N62.1150 (18)B4—F141.372 (4)
Cu2—N82.1295 (16)B4—F131.386 (4)
N6—C311.339 (3)B4—F161.391 (3)
N6—C421.375 (2)B4A—F15A1.364 (15)
N7—C401.337 (3)B4A—F13A1.391 (14)
N7—C411.371 (2)B4A—F16A1.392 (14)
N8—C451.339 (2)B4A—F14A1.392 (15)
N1—Cu1—N4170.39 (6)C41—N7—Cu2112.88 (13)
N1—Cu1—N583.26 (6)C45—N8—C56118.32 (17)
N4—Cu1—N587.80 (7)C45—N8—Cu2132.63 (13)
N1—Cu1—N3101.85 (6)C56—N8—Cu2109.03 (12)
N4—Cu1—N381.63 (6)C54—N9—C55119.16 (18)
N5—Cu1—N3132.45 (7)C54—N9—Cu2126.84 (15)
N1—Cu1—N281.43 (6)C55—N9—Cu2113.58 (12)
N4—Cu1—N2106.03 (6)C59—N10—Cu2164.90 (18)
N5—Cu1—N2118.15 (7)N6—C31—C32121.4 (2)
N3—Cu1—N2109.32 (6)N6—C31—C43119.0 (2)
C1—N1—C12119.70 (15)C32—C31—C43119.6 (2)
C1—N1—Cu1126.13 (13)C33—C32—C31120.5 (2)
C12—N1—Cu1113.46 (12)C33—C32—H32119.8
C10—N2—C11118.46 (16)C31—C32—H32119.8
C10—N2—Cu1132.76 (12)C32—C33—C34119.6 (2)
C11—N2—Cu1108.70 (12)C32—C33—H33120.2
C15—N3—C26118.22 (16)C34—C33—H33120.2
C15—N3—Cu1132.51 (13)C42—C34—C33116.9 (2)
C26—N3—Cu1109.04 (12)C42—C34—C35119.5 (2)
C24—N4—C25119.56 (16)C33—C34—C35123.6 (2)
C24—N4—Cu1127.61 (13)C36—C35—C34121.2 (2)
C25—N4—Cu1112.19 (12)C36—C35—H35119.4
C29—N5—Cu1163.05 (18)C34—C35—H35119.4
N1—C1—C2120.44 (17)C35—C36—C37120.8 (2)
N1—C1—C13119.39 (16)C35—C36—H36119.6
C2—C1—C13120.17 (17)C37—C36—H36119.6
C3—C2—C1120.55 (18)C38—C37—C41117.60 (19)
C3—C2—H2119.7C38—C37—C36123.49 (19)
C1—C2—H2119.7C41—C37—C36118.90 (19)
C2—C3—C4119.67 (17)C39—C38—C37119.55 (19)
C2—C3—H3120.2C39—C38—H38120.2
C4—C3—H3120.2C37—C38—H38120.2
C12—C4—C3117.16 (17)C38—C39—C40120.4 (2)
C12—C4—C5119.21 (17)C38—C39—H39119.8
C3—C4—C5123.62 (17)C40—C39—H39119.8
C6—C5—C4120.99 (17)N7—C40—C39121.12 (19)
C6—C5—H5119.5N7—C40—C44119.46 (18)
C4—C5—H5119.5C39—C40—C44119.42 (19)
C5—C6—C7120.79 (18)N7—C41—C37122.17 (18)
C5—C6—H6119.6N7—C41—C42117.45 (17)
C7—C6—H6119.6C37—C41—C42120.36 (18)
C11—C7—C8116.77 (17)N6—C42—C34123.25 (19)
C11—C7—C6119.68 (17)N6—C42—C41117.48 (18)
C8—C7—C6123.55 (17)C34—C42—C41119.24 (18)
C9—C8—C7119.77 (18)C31—C43—H43A109.5
C9—C8—H8120.1C31—C43—H43B109.5
C7—C8—H8120.1H43A—C43—H43B109.5
C8—C9—C10120.32 (18)C31—C43—H43C109.5
C8—C9—H9119.8H43A—C43—H43C109.5
C10—C9—H9119.8H43B—C43—H43C109.5
N2—C10—C9121.24 (17)C40—C44—H44A109.5
N2—C10—C14118.98 (17)C40—C44—H44B109.5
C9—C10—C14119.76 (17)H44A—C44—H44B109.5
N2—C11—C7123.42 (17)C40—C44—H44C109.5
N2—C11—C12117.43 (16)H44A—C44—H44C109.5
C7—C11—C12119.11 (16)H44B—C44—H44C109.5
N1—C12—C4122.45 (16)N8—C45—C46121.50 (18)
N1—C12—C11117.41 (15)N8—C45—C57119.98 (18)
C4—C12—C11120.12 (16)C46—C45—C57118.51 (18)
C1—C13—H13A109.5C47—C46—C45120.06 (19)
C1—C13—H13B109.5C47—C46—H46120.0
H13A—C13—H13B109.5C45—C46—H46120.0
C1—C13—H13C109.5C46—C47—C48120.11 (19)
H13A—C13—H13C109.5C46—C47—H47119.9
H13B—C13—H13C109.5C48—C47—H47119.9
C10—C14—H14A109.5C47—C48—C56117.08 (18)
C10—C14—H14B109.5C47—C48—C49123.72 (19)
H14A—C14—H14B109.5C56—C48—C49119.20 (19)
C10—C14—H14C109.5C50—C49—C48120.8 (2)
H14A—C14—H14C109.5C50—C49—H49119.6
H14B—C14—H14C109.5C48—C49—H49119.6
N3—C15—C16121.1 (2)C49—C50—C51121.59 (19)
N3—C15—C27119.07 (18)C49—C50—H50119.2
C16—C15—C27119.79 (19)C51—C50—H50119.2
C17—C16—C15120.4 (2)C52—C51—C55117.0 (2)
C17—C16—H16119.8C52—C51—C50124.0 (2)
C15—C16—H16119.8C55—C51—C50118.93 (19)
C16—C17—C18120.03 (19)C53—C52—C51119.7 (2)
C16—C17—H17120.0C53—C52—H52120.1
C18—C17—H17120.0C51—C52—H52120.1
C17—C18—C26116.87 (19)C52—C53—C54121.0 (2)
C17—C18—C19123.94 (19)C52—C53—H53119.5
C26—C18—C19119.2 (2)C54—C53—H53119.5
C20—C19—C18120.98 (19)N9—C54—C53120.2 (2)
C20—C19—H19119.5N9—C54—C58119.1 (2)
C18—C19—H19119.5C53—C54—C58120.7 (2)
C19—C20—C21121.33 (19)N9—C55—C51122.96 (18)
C19—C20—H20119.3N9—C55—C56117.21 (16)
C21—C20—H20119.3C51—C55—C56119.76 (18)
C22—C21—C25117.11 (19)N8—C56—C48122.85 (17)
C22—C21—C20123.96 (19)N8—C56—C55117.45 (17)
C25—C21—C20118.9 (2)C48—C56—C55119.64 (17)
C23—C22—C21119.65 (19)C45—C57—H57A109.5
C23—C22—H22120.2C45—C57—H57B109.5
C21—C22—H22120.2H57A—C57—H57B109.5
C22—C23—C24121.1 (2)C45—C57—H57C109.5
C22—C23—H23119.5H57A—C57—H57C109.5
C24—C23—H23119.5H57B—C57—H57C109.5
N4—C24—C23119.89 (19)C54—C58—H58A109.5
N4—C24—C28119.77 (18)C54—C58—H58B109.5
C23—C24—C28120.33 (19)H58A—C58—H58B109.5
N4—C25—C21122.67 (18)C54—C58—H58C109.5
N4—C25—C26117.53 (16)H58A—C58—H58C109.5
C21—C25—C26119.77 (17)H58B—C58—H58C109.5
N3—C26—C18123.20 (18)N10—C59—C60179.8 (3)
N3—C26—C25116.92 (16)C59—C60—H60A109.5
C18—C26—C25119.80 (18)C59—C60—H60B109.5
C15—C27—H27A109.5H60A—C60—H60B109.5
C15—C27—H27B109.5C59—C60—H60C109.5
H27A—C27—H27B109.5H60A—C60—H60C109.5
C15—C27—H27C109.5H60B—C60—H60C109.5
H27A—C27—H27C109.5F2—B1—F4107.83 (18)
H27B—C27—H27C109.5F2—B1—F3108.17 (19)
C24—C28—H28A109.5F4—B1—F3110.45 (19)
C24—C28—H28B109.5F2—B1—F1109.42 (18)
H28A—C28—H28B109.5F4—B1—F1111.20 (18)
C24—C28—H28C109.5F3—B1—F1109.69 (17)
H28A—C28—H28C109.5F8—B2—F5111.0 (2)
H28B—C28—H28C109.5F8—B2—F7107.5 (2)
N5—C29—C30178.7 (3)F5—B2—F7106.3 (2)
C29—C30—H30A109.5F8—B2—F6112.6 (2)
C29—C30—H30B109.5F5—B2—F6110.27 (19)
H30A—C30—H30B109.5F7—B2—F6108.77 (19)
C29—C30—H30C109.5F10—B3—F9111.1 (2)
H30A—C30—H30C109.5F10—B3—F11110.6 (2)
H30B—C30—H30C109.5F9—B3—F11109.4 (2)
N9—Cu2—N7171.49 (7)F10—B3—F12109.1 (2)
N9—Cu2—N1084.78 (7)F9—B3—F12108.6 (2)
N7—Cu2—N1086.72 (7)F11—B3—F12107.9 (2)
N9—Cu2—N6103.17 (7)F15—B4—F14110.4 (3)
N7—Cu2—N681.92 (6)F15—B4—F13108.9 (3)
N10—Cu2—N6128.15 (7)F14—B4—F13109.7 (2)
N9—Cu2—N881.35 (6)F15—B4—F16107.8 (3)
N7—Cu2—N8103.69 (6)F14—B4—F16109.4 (3)
N10—Cu2—N8123.42 (7)F13—B4—F16110.6 (2)
N6—Cu2—N8108.43 (6)F15A—B4A—F13A105.9 (13)
C31—N6—C42118.24 (18)F15A—B4A—F16A108.9 (13)
C31—N6—Cu2132.65 (14)F13A—B4A—F16A112.0 (14)
C42—N6—Cu2108.99 (13)F15A—B4A—F14A115.4 (15)
C40—N7—C41119.19 (17)F13A—B4A—F14A106.1 (12)
C40—N7—Cu2127.65 (14)F16A—B4A—F14A108.5 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2351).

References

  • Addison, A. W., Rao, T. R., Reedick, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1949–1956.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Holmes, R. R. (1984). Prog. Inorg. Chem.32, 119–235.
  • James, B. R. & Williams, R. J. P. (1961). J. Chem. Soc. pp. 2007–2019.
  • Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1998). Inorg. Chem.37, 2285-2290. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watton, S. P. (2009). Acta Cryst. E65, m585–m586. [PMC free article] [PubMed]
  • Watton, S. P. (2010). Acta Cryst. E66, m1359. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography