PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2698.
Published online 2010 October 2. doi:  10.1107/S1600536810038304
PMCID: PMC3009074

Morpholinium styphnate

Abstract

In the title mol­ecular salt (systematic name: morpholinium 3-hy­droxy-2,4,6-trinitro­phenolate), C4H10NO+·C6H2N3O8 , two of the nitro groups of the anion are close to parallel with the plane of the benzene ring [dihedral angles = 3.46 (9) and 11.60 (10)°] and one is almost perpendicular [dihedral angle = 82.23 (8)°]. An intra­molecular O—H(...)O hydrogen bond occurs in the anion. The morpholinium cation has a slightly distorted chair conformation. In the crystal, the components are linked by simple N—H(...)O and trifurcated N—H(...)(O,O,O) hydrogen bonds.

Related literature

For related mol­ecular salts, see: Radha et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2698-scheme1.jpg

Experimental

Crystal data

  • C4H10NO+·C6H2N3O8
  • M r = 332.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2698-efi1.jpg
  • a = 7.680 (5) Å
  • b = 7.973 (5) Å
  • c = 11.852 (5) Å
  • α = 94.785 (5)°
  • β = 99.016 (5)°
  • γ = 108.188 (5)°
  • V = 674.1 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 293 K
  • 0.30 × 0.16 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.957, T max = 0.977
  • 16214 measured reflections
  • 3841 independent reflections
  • 2944 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.157
  • S = 1.06
  • 3841 reflections
  • 225 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038304/hb5640sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038304/hb5640Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Comment

Picric acid (1-hydroxy – 2,4,6- trinitrobenzene) forms 1:1 donor –acceptor adducts with amines and in these adducts, the main stabilizing factor is the proton transfer from OH of nitro compound to the nitrogen atom of amine (Radha et al.,1987). Unlike picric acid, styphnic acid (2,4,6-trinitro -1,3-benzene diol) contains two phenolic OH groups and hence the type of adduct formation with amines and the mode of interaction are to be envisaged. This necessitates the synthesis of the title molecule from styphnic acid and morpholine (tetrahydro – 1,4-oxazine). Single crystal X-ray analysis data clearly indicate that 1:1 adduct (Scheme 1)is formed from styphnic acid and morpholine and the main contributing factor for the formation of the adduct is the proton transfer from phenolic OH of styphnic acid to the nitrogen atom of morpholine. Hydrogen bond (N—H···O) is noticed between cation and anion moieties. Intramolecular hydrogen bond [O—H···O; R11(6) motif] is also observed. Puckering parameters[(q2 = 0.0243(0.0017), q3=0.5764 (0.0019), [var phi]2=-175.98(5.69), QT=0.5770(0.0019);θ2=2.41(0.17)] of the cation moiety (morpholinium ion) indicate that it has slightly distorted chair conformation.

Experimental

Styphnic acid (2.45 g, 0.01 mol) was dissolved in the minimum quantity of ethanol. Morpholine(0.90 g, 0.01 mol) dissolved in the minimum amount of ethanol was added to styphnic acid solution. The mixture was stirred well for 3 h and kept as such for another 6 h. The mixture was then poured into ice cold water with stirring. The adduct formed was filtered and washed first with water and then with alcohol and dried. The dried adduct was washed several times with ether and recrystallized from ethanol (yield 70–75% mp.481–483 K). Yellow prisms of (I) were obtained by slow evaporation of ethanol at room temperature. The same product was obtained when styphnic acid (0.01 mol) was mixed with excess morpholine (0.03 mol).

Refinement

The highset difference peak is 0.90Å from O4.

Figures

Fig. 1.
The molecular structure of (I) showing 50% displecement ellipsoids.
Fig. 2.
The hydrogen bonding pattern
Fig. 3.
The packing view of the adduct

Crystal data

C4H10NO+·C6H2N3O8Z = 2
Mr = 332.24F(000) = 344
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.680 (5) ÅCell parameters from 5851 reflections
b = 7.973 (5) Åθ = 1.8–29.8°
c = 11.852 (5) ŵ = 0.15 mm1
α = 94.785 (5)°T = 293 K
β = 99.016 (5)°Prism, yellow
γ = 108.188 (5)°0.30 × 0.16 × 0.16 mm
V = 674.1 (7) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer3841 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
graphiteRint = 0.023
ω and [var phi] scanθmax = 29.8°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −10→10
Tmin = 0.957, Tmax = 0.977k = −11→11
16214 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157w = 1/[σ2(Fo2) + (0.0867P)2 + 0.1583P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3841 reflectionsΔρmax = 0.77 e Å3
225 parametersΔρmin = −0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.48003 (18)0.27015 (18)−0.13460 (12)0.0293 (3)
C20.31234 (18)0.11938 (18)−0.14972 (11)0.0287 (3)
C30.24207 (17)0.02930 (17)−0.06486 (12)0.0270 (3)
C40.33875 (18)0.09746 (17)0.05024 (11)0.0274 (3)
C50.49948 (18)0.24441 (18)0.07302 (12)0.0288 (3)
C60.57105 (17)0.32628 (17)−0.01487 (12)0.0278 (3)
C70.7665 (3)0.2429 (2)−0.41273 (15)0.0457 (4)
H7A0.70220.1253−0.39540.055*
H7B0.86440.2344−0.45330.055*
C80.6313 (3)0.3086 (3)−0.48707 (15)0.0497 (4)
H8A0.57890.2278−0.55890.060*
H8B0.52980.3097−0.44790.060*
C90.7903 (3)0.6028 (3)−0.40700 (17)0.0536 (5)
H9A0.68800.6021−0.36810.064*
H9B0.84540.7225−0.42440.064*
C100.9345 (2)0.5533 (2)−0.32858 (15)0.0453 (4)
H10A1.04050.5600−0.36520.054*
H10B0.97840.6355−0.25710.054*
N10.74511 (16)0.47391 (16)0.01785 (11)0.0332 (3)
N20.21517 (18)0.0548 (2)−0.26913 (11)0.0398 (3)
N30.27441 (17)0.01490 (17)0.14458 (11)0.0352 (3)
N40.84911 (19)0.36922 (19)−0.30416 (11)0.0373 (3)
O10.81876 (17)0.54823 (17)−0.05681 (12)0.0544 (4)
O20.81128 (17)0.52044 (18)0.12078 (11)0.0533 (3)
O30.1114 (3)0.1265 (3)−0.31268 (14)0.0847 (6)
O40.2437 (3)−0.0695 (3)−0.31820 (14)0.0838 (6)
O50.14855 (16)−0.13353 (15)0.12339 (10)0.0440 (3)
O60.3436 (2)0.0883 (2)0.24304 (10)0.0587 (4)
O70.53339 (16)0.33703 (18)−0.21939 (10)0.0463 (3)
O80.08817 (14)−0.11441 (14)−0.09399 (10)0.0371 (3)
O90.7206 (2)0.4823 (2)−0.51108 (10)0.0534 (3)
H4A0.762 (3)0.371 (3)−0.2657 (19)0.053 (6)*
H4B0.931 (3)0.333 (3)−0.2646 (18)0.047 (5)*
H50.562 (3)0.285 (3)0.1470 (19)0.048 (5)*
H80.079 (4)−0.160 (3)−0.026 (2)0.069 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0251 (6)0.0320 (6)0.0319 (7)0.0093 (5)0.0077 (5)0.0079 (5)
C20.0269 (6)0.0312 (6)0.0266 (6)0.0088 (5)0.0033 (5)0.0025 (5)
C30.0242 (6)0.0244 (6)0.0323 (7)0.0082 (5)0.0050 (5)0.0033 (5)
C40.0273 (6)0.0269 (6)0.0288 (6)0.0088 (5)0.0066 (5)0.0067 (5)
C50.0273 (6)0.0283 (6)0.0297 (7)0.0090 (5)0.0030 (5)0.0033 (5)
C60.0221 (5)0.0250 (6)0.0352 (7)0.0065 (5)0.0045 (5)0.0049 (5)
C70.0533 (9)0.0447 (9)0.0365 (8)0.0164 (7)0.0019 (7)0.0028 (7)
C80.0473 (9)0.0627 (11)0.0332 (8)0.0175 (8)−0.0039 (7)0.0003 (7)
C90.0680 (12)0.0471 (10)0.0506 (10)0.0233 (9)0.0134 (9)0.0136 (8)
C100.0451 (9)0.0448 (9)0.0385 (8)0.0042 (7)0.0080 (7)0.0061 (7)
N10.0245 (5)0.0284 (6)0.0452 (7)0.0076 (4)0.0049 (5)0.0047 (5)
N20.0351 (6)0.0491 (8)0.0297 (6)0.0079 (5)0.0050 (5)0.0014 (5)
N30.0343 (6)0.0384 (6)0.0337 (6)0.0106 (5)0.0084 (5)0.0124 (5)
N40.0343 (6)0.0486 (8)0.0272 (6)0.0108 (6)0.0046 (5)0.0101 (5)
O10.0419 (6)0.0498 (7)0.0578 (8)−0.0079 (5)0.0139 (6)0.0147 (6)
O20.0385 (6)0.0535 (7)0.0484 (7)−0.0044 (5)−0.0036 (5)−0.0010 (6)
O30.0871 (12)0.1311 (16)0.0459 (8)0.0682 (12)−0.0171 (8)−0.0025 (9)
O40.1088 (14)0.0908 (13)0.0509 (9)0.0491 (11)−0.0020 (9)−0.0255 (8)
O50.0432 (6)0.0382 (6)0.0473 (7)0.0038 (5)0.0130 (5)0.0167 (5)
O60.0635 (8)0.0691 (9)0.0290 (6)0.0013 (7)0.0071 (5)0.0107 (6)
O70.0364 (6)0.0621 (8)0.0379 (6)0.0070 (5)0.0117 (5)0.0204 (5)
O80.0320 (5)0.0316 (5)0.0389 (6)−0.0003 (4)0.0047 (4)0.0040 (4)
O90.0640 (8)0.0711 (9)0.0337 (6)0.0321 (7)0.0077 (5)0.0185 (6)

Geometric parameters (Å, °)

C1—O71.2426 (17)C8—H8B0.9700
C1—C21.4356 (19)C9—O91.416 (2)
C1—C61.446 (2)C9—C101.503 (3)
C2—C31.3665 (19)C9—H9A0.9700
C2—N21.4603 (19)C9—H9B0.9700
C3—O81.3378 (17)C10—N41.482 (2)
C3—C41.4194 (19)C10—H10A0.9700
C4—C51.3817 (19)C10—H10B0.9700
C4—N31.4214 (17)N1—O11.2203 (17)
C5—C61.3719 (19)N1—O21.2233 (18)
C5—H50.91 (2)N2—O31.197 (2)
C6—N11.4498 (18)N2—O41.203 (2)
C7—N41.484 (2)N3—O61.2184 (18)
C7—C81.502 (3)N3—O51.2482 (18)
C7—H7A0.9700N4—H4A0.87 (2)
C7—H7B0.9700N4—H4B0.86 (2)
C8—O91.416 (3)O8—H80.91 (3)
C8—H8A0.9700
O7—C1—C2120.48 (13)O9—C9—C10111.16 (15)
O7—C1—C6126.99 (13)O9—C9—H9A109.4
C2—C1—C6112.53 (11)C10—C9—H9A109.4
C3—C2—C1126.43 (12)O9—C9—H9B109.4
C3—C2—N2118.38 (12)C10—C9—H9B109.4
C1—C2—N2115.13 (12)H9A—C9—H9B108.0
O8—C3—C2119.07 (12)N4—C10—C9108.79 (14)
O8—C3—C4124.16 (12)N4—C10—H10A109.9
C2—C3—C4116.77 (12)C9—C10—H10A109.9
C5—C4—C3120.65 (12)N4—C10—H10B109.9
C5—C4—N3118.42 (12)C9—C10—H10B109.9
C3—C4—N3120.92 (12)H10A—C10—H10B108.3
C6—C5—C4120.95 (13)O1—N1—O2122.51 (13)
C6—C5—H5119.1 (13)O1—N1—C6119.61 (13)
C4—C5—H5119.9 (13)O2—N1—C6117.88 (12)
C5—C6—C1122.56 (12)O3—N2—O4123.56 (16)
C5—C6—N1116.61 (13)O3—N2—C2118.88 (15)
C1—C6—N1120.83 (12)O4—N2—C2117.55 (15)
N4—C7—C8109.05 (15)O6—N3—O5121.80 (13)
N4—C7—H7A109.9O6—N3—C4119.89 (13)
C8—C7—H7A109.9O5—N3—C4118.30 (13)
N4—C7—H7B109.9C10—N4—C7110.99 (13)
C8—C7—H7B109.9C10—N4—H4A107.0 (14)
H7A—C7—H7B108.3C7—N4—H4A109.7 (14)
O9—C8—C7111.04 (15)C10—N4—H4B110.8 (14)
O9—C8—H8A109.4C7—N4—H4B107.9 (14)
C7—C8—H8A109.4H4A—N4—H4B110.4 (19)
O9—C8—H8B109.4C3—O8—H8103.0 (16)
C7—C8—H8B109.4C8—O9—C9109.86 (13)
H8A—C8—H8B108.0
O7—C1—C2—C3177.37 (14)C2—C1—C6—N1178.50 (11)
C6—C1—C2—C3−2.0 (2)N4—C7—C8—O957.88 (19)
O7—C1—C2—N20.1 (2)O9—C9—C10—N4−58.2 (2)
C6—C1—C2—N2−179.23 (12)C5—C6—N1—O1177.61 (13)
C1—C2—C3—O8−176.85 (13)C1—C6—N1—O1−2.3 (2)
N2—C2—C3—O80.29 (19)C5—C6—N1—O2−3.30 (19)
C1—C2—C3—C43.7 (2)C1—C6—N1—O2176.81 (13)
N2—C2—C3—C4−179.14 (12)C3—C2—N2—O399.3 (2)
O8—C3—C4—C5178.49 (12)C1—C2—N2—O3−83.3 (2)
C2—C3—C4—C5−2.12 (19)C3—C2—N2—O4−80.3 (2)
O8—C3—C4—N3−0.6 (2)C1—C2—N2—O497.2 (2)
C2—C3—C4—N3178.84 (12)C5—C4—N3—O610.8 (2)
C3—C4—C5—C6−1.0 (2)C3—C4—N3—O6−170.13 (14)
N3—C4—C5—C6178.09 (12)C5—C4—N3—O5−168.37 (13)
C4—C5—C6—C12.8 (2)C3—C4—N3—O510.7 (2)
C4—C5—C6—N1−177.07 (12)C9—C10—N4—C754.78 (19)
O7—C1—C6—C5179.29 (14)C8—C7—N4—C10−54.73 (19)
C2—C1—C6—C5−1.38 (19)C7—C8—O9—C9−61.7 (2)
O7—C1—C6—N1−0.8 (2)C10—C9—O9—C862.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O8—H8···O50.91 (3)1.75 (3)2.571 (2)149 (2)
N4—H4A···O70.87 (2)1.87 (2)2.715 (2)164 (2)
N4—H4B···O2i0.86 (2)2.31 (2)2.962 (2)132.4 (17)
N4—H4B···O5ii0.86 (2)2.42 (2)2.967 (2)121.5 (17)
N4—H4B···O3iii0.86 (2)2.54 (2)3.206 (3)134.3 (17)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5640).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Radha, N., Dhoulethbegum, S. & Sahayamary, J. (1987). Indian J. Chem. Sect. A, 26, 1006–1008.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography