PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2812.
Published online 2010 October 13. doi:  10.1107/S1600536810040201
PMCID: PMC3009072

1-(3-Chloro­phen­yl)-3-(4-nitro­phen­yl)urea

Abstract

In the title compound, C13H10ClN3O3, prepared by the reaction of 1-chloro-3-isocyanato­benzene with 4-nitro­benzenamine, the two substituent benzene rings are roughly coplanar [inter-ring dihedral angle = 8.70 (7)°]. In the crystal, mol­ecules make cyclic inter­molecular associations through two urea–nitro N—H(...)O hydrogen bonds, forming a chain structure [give chain direction] in which there are also weak inter­molecular C—H(...)Cl inter­actions. The urea O atom has only intra­molecular aromatic ring C—H(...)O associations.

Related literature

For the bioactivity of urea derivatives, see: Wang et al. (2001 [triangle]); Song et al. (2008 [triangle]); Yip et al. (1986 [triangle]); Liu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2812-scheme1.jpg

Experimental

Crystal data

  • C13H10ClN3O3
  • M r = 291.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2812-efi1.jpg
  • a = 8.3410 (13) Å
  • b = 12.5410 (18) Å
  • c = 12.1120 (16) Å
  • β = 99.866 (5)°
  • V = 1248.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 113 K
  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Rigaku Saturn724 CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2009 [triangle]) T min = 0.928, T max = 0.939
  • 15672 measured reflections
  • 2964 independent reflections
  • 2396 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.092
  • S = 1.04
  • 2964 reflections
  • 189 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2009 [triangle]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalStructure (Rigaku, 2009 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040201/zs2070sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040201/zs2070Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

supplementary crystallographic information

Comment

Previous studies have shown that urea derivatives have important medical and biological applications, e.g. N, N'-diarylurea derivatives have cytokinin activity (Wang et al., 2001) and bacteriostatic activity. Compounds bearing a urea linkage to benzothiazole were also investigated for their ability to inhibit Raf-1 activity (Song et al.. 2008). Thidiazuron, a substituted heterocyclic urea compound, mimicked the effect of benzyladenine (BA) in the Ca2+ and cytokinin systems or on the IAA and cytokinin systems (Yip et al.. 1986). Recently, better activity was achieved with benzoyl urea derivatives (Liu et al.. 2005). In order to discover further biologically active urea compounds, the title compound C13H10ClN3O3 (I) was synthesized and its crystal structure is reported here.

In the structure of title compound (Fig. 1), the molecule is almost planar [torsion angles C1–N1–C2–C7 and C1–N2–C8–C13, 178.39 (11)° and -165.69 (11)°] with a dihedral angle between two phenyl rings of 8.70 (7)°. In the crystal structure, the molecules give cyclic intermolecular associations through two urea N–H···Onitro hydrogen bonds (Table 1) giving a one-dimensional chain structure (Fig. 2) in which there are also weak intermolecular C—H···Cl interactions [C12–H12···Cl1iii, 3.5465 (13) Å] [symmetry code (iii): x, y + 1, z]. The urea O atom has only intramolecular aromatic ring C–H···O associations [C3–H3···O1, 2.8720 (15) Å; C9–H9···O1, 2.8833 (15) Å].

Experimental

1-Chloro-3-isocyanatobenzene (0.153 g, 1 mmol) and 4-nitrobenzenamine (0.138 g, 1 mmol) were mixed and ground in an agate mortar, then irradiated by microwave for 1 min. After the reaction was completed, the resulting product was dissolved in 95% ethanol with warming and immediately filtered. The product obtained was recrystallized from ethanol and single crystals of the title compound were obtained by slow evaporation.

Refinement

The urea H atoms were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H = 0.95 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular conformation and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H10ClN3O3F(000) = 600
Mr = 291.69Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 4351 reflections
a = 8.3410 (13) Åθ = 1.6–27.9°
b = 12.5410 (18) ŵ = 0.32 mm1
c = 12.1120 (16) ÅT = 113 K
β = 99.866 (5)°Prism, colorless
V = 1248.2 (3) Å30.24 × 0.22 × 0.20 mm
Z = 4

Data collection

Rigaku Saturn724 CCD diffractometer2964 independent reflections
Radiation source: rotating anode2396 reflections with I > 2σ(I)
multilayerRint = 0.041
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = −10→10
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2009)k = −16→16
Tmin = 0.928, Tmax = 0.939l = −15→15
15672 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0589P)2] where P = (Fo2 + 2Fc2)/3
2964 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.22721 (4)0.01383 (3)0.53821 (3)0.02970 (12)
O10.31522 (10)0.39764 (6)0.45111 (7)0.0187 (2)
O20.55192 (10)0.80112 (7)0.13369 (7)0.0218 (2)
O30.49009 (10)0.93629 (7)0.22967 (7)0.0221 (2)
N10.17484 (13)0.41897 (8)0.59747 (9)0.0177 (2)
N20.23742 (12)0.56468 (8)0.50077 (9)0.0171 (2)
N30.49071 (11)0.83930 (8)0.21073 (8)0.0173 (2)
C10.24839 (13)0.45459 (9)0.51100 (10)0.0152 (2)
C20.15298 (14)0.31274 (9)0.62949 (10)0.0153 (2)
C30.20047 (14)0.22475 (9)0.57217 (10)0.0175 (3)
H30.25250.23380.50890.021*
C40.16951 (15)0.12397 (9)0.61013 (10)0.0191 (3)
C50.09396 (15)0.10706 (10)0.70225 (10)0.0205 (3)
H50.07430.03690.72620.025*
C60.04799 (14)0.19542 (10)0.75831 (10)0.0198 (3)
H6−0.00420.18580.82150.024*
C70.07749 (14)0.29736 (9)0.72298 (10)0.0175 (3)
H70.04630.35730.76240.021*
C80.29852 (14)0.62892 (9)0.42460 (10)0.0151 (2)
C90.34844 (14)0.59016 (9)0.32687 (10)0.0177 (3)
H90.34070.51620.30960.021*
C100.40879 (14)0.66018 (10)0.25622 (10)0.0178 (3)
H100.44340.63480.19030.021*
C110.41844 (14)0.76771 (9)0.28220 (10)0.0157 (2)
C120.36528 (14)0.80862 (9)0.37613 (10)0.0174 (3)
H120.37020.88300.39130.021*
C130.30537 (14)0.73906 (10)0.44672 (10)0.0174 (3)
H130.26810.76570.51130.021*
H10.1324 (18)0.4614 (13)0.6334 (14)0.035 (5)*
H20.1933 (16)0.5948 (12)0.5489 (12)0.024 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0455 (2)0.01399 (17)0.0309 (2)0.00282 (13)0.01006 (16)−0.00398 (12)
O10.0246 (5)0.0139 (4)0.0200 (4)0.0023 (3)0.0111 (4)−0.0004 (3)
O20.0264 (5)0.0220 (5)0.0196 (4)−0.0022 (4)0.0115 (4)0.0009 (4)
O30.0290 (5)0.0128 (4)0.0259 (5)−0.0023 (3)0.0089 (4)0.0026 (3)
N10.0245 (6)0.0118 (5)0.0195 (5)0.0016 (4)0.0114 (4)−0.0003 (4)
N20.0244 (6)0.0115 (5)0.0182 (5)0.0011 (4)0.0120 (4)−0.0003 (4)
N30.0171 (5)0.0172 (5)0.0178 (5)−0.0014 (4)0.0035 (4)0.0030 (4)
C10.0159 (6)0.0137 (5)0.0164 (5)−0.0012 (4)0.0037 (4)0.0008 (4)
C20.0151 (6)0.0132 (5)0.0173 (6)−0.0008 (4)0.0019 (5)0.0017 (4)
C30.0191 (6)0.0168 (6)0.0171 (6)0.0007 (5)0.0042 (5)0.0000 (5)
C40.0220 (6)0.0141 (6)0.0202 (6)0.0015 (5)0.0011 (5)−0.0023 (5)
C50.0235 (6)0.0147 (6)0.0228 (6)−0.0032 (5)0.0020 (5)0.0037 (5)
C60.0197 (6)0.0209 (6)0.0192 (6)−0.0023 (5)0.0045 (5)0.0043 (5)
C70.0187 (6)0.0165 (6)0.0179 (6)0.0004 (5)0.0050 (5)0.0009 (4)
C80.0147 (6)0.0142 (6)0.0171 (5)−0.0001 (4)0.0046 (4)0.0016 (4)
C90.0223 (6)0.0137 (5)0.0181 (6)−0.0004 (5)0.0067 (5)−0.0010 (4)
C100.0208 (6)0.0168 (6)0.0172 (6)0.0012 (5)0.0072 (5)−0.0006 (5)
C110.0160 (6)0.0150 (6)0.0168 (6)−0.0009 (4)0.0049 (5)0.0034 (4)
C120.0205 (6)0.0132 (5)0.0194 (6)−0.0001 (4)0.0056 (5)0.0000 (4)
C130.0212 (6)0.0148 (6)0.0176 (6)0.0010 (5)0.0076 (5)−0.0010 (4)

Geometric parameters (Å, °)

Cl1—C41.7441 (12)C5—C61.3876 (17)
O1—C11.2187 (14)C5—H50.9500
O2—N31.2345 (13)C6—C71.3835 (16)
O3—N31.2380 (13)C6—H60.9500
N1—C11.3759 (15)C7—H70.9500
N1—C21.4080 (14)C8—C131.4064 (16)
N1—H10.806 (16)C8—C91.4070 (15)
N2—C81.3860 (15)C9—C101.3800 (16)
N2—C11.3879 (15)C9—H90.9500
N2—H20.832 (14)C10—C111.3840 (17)
N3—C111.4483 (14)C10—H100.9500
C2—C31.3968 (16)C11—C121.3882 (16)
C2—C71.4001 (16)C12—C131.3741 (16)
C3—C41.3842 (16)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.3885 (16)
C1—N1—C2127.77 (10)C7—C6—C5120.52 (11)
C1—N1—H1119.4 (12)C7—C6—H6119.7
C2—N1—H1112.7 (12)C5—C6—H6119.7
C8—N2—C1127.69 (10)C6—C7—C2120.39 (11)
C8—N2—H2117.4 (10)C6—C7—H7119.8
C1—N2—H2114.8 (10)C2—C7—H7119.8
O2—N3—O3122.45 (10)N2—C8—C13116.84 (10)
O2—N3—C11118.67 (10)N2—C8—C9123.70 (11)
O3—N3—C11118.88 (10)C13—C8—C9119.44 (11)
O1—C1—N1124.88 (11)C10—C9—C8119.59 (11)
O1—C1—N2124.04 (11)C10—C9—H9120.2
N1—C1—N2111.08 (10)C8—C9—H9120.2
C3—C2—C7119.89 (11)C9—C10—C11119.48 (11)
C3—C2—N1123.33 (11)C9—C10—H10120.3
C7—C2—N1116.78 (10)C11—C10—H10120.3
C4—C3—C2118.12 (11)C10—C11—C12122.16 (11)
C4—C3—H3120.9C10—C11—N3118.82 (10)
C2—C3—H3120.9C12—C11—N3119.00 (11)
C3—C4—C5122.85 (11)C13—C12—C11118.46 (11)
C3—C4—Cl1118.29 (9)C13—C12—H12120.8
C5—C4—Cl1118.85 (10)C11—C12—H12120.8
C6—C5—C4118.22 (11)C12—C13—C8120.81 (11)
C6—C5—H5120.9C12—C13—H13119.6
C4—C5—H5120.9C8—C13—H13119.6
C2—N1—C1—O1−4.21 (19)C1—N2—C8—C13−165.69 (11)
C2—N1—C1—N2176.06 (11)C1—N2—C8—C916.15 (18)
C8—N2—C1—O1−0.55 (19)N2—C8—C9—C10−179.59 (11)
C8—N2—C1—N1179.19 (11)C13—C8—C9—C102.29 (17)
C1—N1—C2—C3−2.48 (19)C8—C9—C10—C11−0.37 (17)
C1—N1—C2—C7178.39 (11)C9—C10—C11—C12−1.71 (18)
C7—C2—C3—C40.46 (17)C9—C10—C11—N3176.47 (10)
N1—C2—C3—C4−178.64 (11)O2—N3—C11—C10−5.16 (16)
C2—C3—C4—C5−0.09 (18)O3—N3—C11—C10175.45 (10)
C2—C3—C4—Cl1179.53 (9)O2—N3—C11—C12173.09 (10)
C3—C4—C5—C6−0.06 (19)O3—N3—C11—C12−6.30 (16)
Cl1—C4—C5—C6−179.68 (9)C10—C11—C12—C131.80 (17)
C4—C5—C6—C7−0.16 (18)N3—C11—C12—C13−176.39 (10)
C5—C6—C7—C20.54 (17)C11—C12—C13—C80.20 (17)
C3—C2—C7—C6−0.69 (17)N2—C8—C13—C12179.54 (10)
N1—C2—C7—C6178.47 (11)C9—C8—C13—C12−2.22 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.807 (16)2.211 (16)3.0131 (14)172.8 (16)
N2—H2···O2i0.832 (14)2.136 (14)2.9448 (14)164.1 (14)
C3—H3···O10.952.262.8720 (15)121
C9—H9···O10.952.312.8833 (15)118
C12—H12···Cl1ii0.952.833.5465 (13)133

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2070).

References

  • Liu, X. P., Liu, A. P., Lin, L. Z., Wei, Z. Z., Huang, L. & Yu, K. (2005). Modern Agrochem.4, 14–16.
  • Rigaku (2009). CrystalClear-SM Expert and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, E. Y., Kaur, N., Park, M.-Y., Jin, Y.-L., Lee, K., Kim, G. C., Lee, K.-Y., Yang, J.-S., Shin, J.-H., Nam, K.-Y., No, K.-T. & Han, G. (2008). Eur. J. Med. Chem.43, 1519–1524. [PubMed]
  • Wang, J.-L., Li, A.-X., Li, Y.-H., Di, X.-H. & Miao, F.-M. (2001). Acta Chim. Sin.59, 1490–1494.
  • Yip, W. K. & Yang, S. F. (1986). Plant Physiol.80, 515–519. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography