PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1420.
Published online 2010 October 20. doi:  10.1107/S1600536810040912
PMCID: PMC3009065

trans-Dichlorido­bis­[tris(4-meth­oxy­phenyl)­phosphane]palladium(II) toluene solvate

Abstract

In the title compound, trans-[PdCl2{P(4-MeOC6H4)3}2]·C7H8, the Pd(II) atom lies on a center of symmetry, resulting in a distorted trans-square planar geometry. The Pd—P and Pd—Cl bond lengths are 2.3409 (4) and 2.2981 (4) Å, respectively. An intra­molecular C—H(...)Cl hydrogen bond occurs. In the crystal, weak C—H(...)O inter­actions are observed between the aromatic rings of adjacent mol­ecules. The toluene solvate molecule is equally disordered over two sets of sites.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996 [triangle]). For related compounds, see: Meijboom & Omondi (2010 [triangle]). For the synthesis of the starting materials, see: Drew & Doyle (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1420-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C21H21O3P)2]·C7H8
  • M r = 974.13
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1420-efi1.jpg
  • a = 7.8545 (4) Å
  • b = 12.1231 (7) Å
  • c = 12.4024 (8) Å
  • α = 85.666 (2)°
  • β = 78.762 (2)°
  • γ = 75.919 (2)°
  • V = 1123.03 (11) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.65 mm−1
  • T = 100 K
  • 0.27 × 0.20 × 0.08 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.844, T max = 0.950
  • 19639 measured reflections
  • 5573 independent reflections
  • 5169 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.074
  • S = 1.06
  • 5573 reflections
  • 273 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 1.28 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040912/hg2723sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040912/hg2723Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

supplementary crystallographic information

Comment

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound, were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{P(4-MeOC6H4)3}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 88.422 (15) and P—Pd—Cli = 91.578 (15)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2981 (4) Å and a Pd—P bond length of 2.3409 (4) Å, fits well into the typical range for complexes of this kind. Notably the title compound crystallized as a solvated complex; these type of PdII complexes have a tendency to crystallize as solvates (Meijboom & Omondi, 2010). The solvate molecule, toluene, is found 50:50 disordered molecule.

Experimental

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of tris(4-methoxyphenyl)phosphine (0.2 mmol) in dichloromethane (2.0 cm3) was added to a solution of [PdCl2(COD)] (0.1 mmol) in dichloromethane (3.0 cm3). Slow evaporation of the solvent gave the parent palladium compound. Recrystallization from tolunene/hexane afforded crystals of the title compound.

Refinement

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density

Figures

Fig. 1.
The structure (I), showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Accented lettering indicate atoms generated by symmetry (1 ...

Crystal data

[PdCl2(C21H21O3P)2]·C7H8Z = 1
Mr = 974.13F(000) = 502
Triclinic, P1Dx = 1.44 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8545 (4) ÅCell parameters from 5142 reflections
b = 12.1231 (7) Åθ = 2.4–28.3°
c = 12.4024 (8) ŵ = 0.65 mm1
α = 85.666 (2)°T = 100 K
β = 78.762 (2)°Plate, yellow
γ = 75.919 (2)°0.27 × 0.2 × 0.08 mm
V = 1123.03 (11) Å3

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer5573 independent reflections
Radiation source: fine-focus sealed tube5169 reflections with I > 2σ(I)
graphiteRint = 0.037
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.4°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2004)k = −16→16
Tmin = 0.844, Tmax = 0.950l = −16→16
19639 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0261P)2 + 1.197P] where P = (Fo2 + 2Fc2)/3
5573 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 1.27 e Å3
4 restraintsΔρmin = −0.67 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 6 s/frame. A total of 1637 frames were collected with a frame width of 0.5° covering up to θ = 28.31° with 99.8% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pd0.50.50.50.01073 (6)
P0.32288 (6)0.43533 (4)0.65434 (4)0.01130 (9)
Cl0.44125 (6)0.67186 (4)0.58287 (4)0.01752 (10)
C110.2359 (2)0.31163 (15)0.64258 (14)0.0129 (3)
C120.3519 (2)0.20484 (15)0.62301 (15)0.0150 (3)
H120.47660.19720.61680.018*
C130.2882 (2)0.10942 (15)0.61244 (15)0.0162 (3)
H130.36890.03750.5990.019*
C140.1045 (3)0.11999 (16)0.62176 (16)0.0179 (4)
C15−0.0126 (3)0.22615 (16)0.64053 (17)0.0198 (4)
H15−0.13730.23390.64620.024*
C160.0528 (2)0.32029 (15)0.65097 (15)0.0159 (3)
H16−0.02820.39220.66410.019*
C210.1254 (2)0.54510 (14)0.70174 (14)0.0124 (3)
C220.0282 (2)0.60449 (16)0.62413 (15)0.0161 (3)
H220.06380.58360.54930.019*
C23−0.1195 (2)0.69346 (15)0.65361 (15)0.0163 (3)
H23−0.1870.73150.60020.02*
C24−0.1672 (2)0.72600 (15)0.76289 (15)0.0159 (3)
C25−0.0732 (3)0.66642 (16)0.84167 (15)0.0180 (4)
H25−0.10830.68780.91630.022*
C260.0716 (2)0.57583 (15)0.81157 (15)0.0151 (3)
H260.13430.53470.86580.018*
C310.4441 (2)0.39989 (15)0.76733 (14)0.0131 (3)
C320.3972 (3)0.32619 (17)0.85375 (15)0.0186 (4)
H320.30150.29140.85240.022*
C330.4873 (3)0.30242 (17)0.94193 (16)0.0194 (4)
H330.45390.25160.99990.023*
C340.6271 (2)0.35369 (16)0.94457 (15)0.0169 (4)
C350.6740 (3)0.42844 (16)0.85931 (15)0.0180 (4)
H350.76830.46420.86140.022*
C360.5843 (2)0.45100 (16)0.77175 (15)0.0161 (3)
H360.61810.50180.71390.019*
C10.1436 (3)−0.07965 (17)0.6040 (2)0.0291 (5)
H1A0.2311−0.0820.53550.044*
H1B0.0727−0.13550.6020.044*
H1C0.206−0.09770.66650.044*
O10.0278 (2)0.03200 (12)0.61544 (14)0.0259 (3)
C2−0.3886 (3)0.88867 (18)0.72033 (18)0.0257 (4)
H2A−0.30030.92080.66890.039*
H2B−0.48150.95050.75740.039*
H2C−0.44280.84420.67990.039*
O2−0.30260 (18)0.81656 (12)0.80035 (12)0.0217 (3)
C30.6746 (3)0.2635 (2)1.11707 (17)0.0274 (5)
H3A0.54970.29411.15070.041*
H3B0.75090.26041.17160.041*
H3C0.68830.18671.09160.041*
O30.7257 (2)0.33564 (13)1.02543 (11)0.0231 (3)
C010.7355 (9)−0.0476 (6)1.0145 (5)0.0481 (14)*0.5
H01A0.7192−0.10181.07620.072*0.5
H01B0.734−0.08240.9460.072*0.5
H01C0.63860.02111.02610.072*0.5
C020.9034 (10)−0.0180 (6)1.0076 (6)0.0624 (18)*0.5
C030.9981 (10)−0.0566 (5)1.0829 (5)0.0409 (14)*0.5
H030.9624−0.10951.13790.049*0.5
C041.1548 (11)−0.0191 (6)1.0822 (6)0.0619 (18)*0.5
H041.2331−0.04261.13340.074*0.5
C051.1757 (14)0.0568 (8)0.9956 (8)0.074 (2)*0.5
H051.26740.09490.99740.088*0.5
C061.0987 (9)0.0869 (6)0.9139 (6)0.0521 (15)*0.5
H061.14350.13270.85480.063*0.5
C070.9368 (10)0.0471 (5)0.9159 (5)0.0410 (14)*0.5
H070.8650.06440.86070.049*0.5

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd0.01295 (9)0.00955 (9)0.00981 (9)−0.00301 (6)−0.00176 (6)−0.00060 (6)
P0.0125 (2)0.0109 (2)0.0107 (2)−0.00299 (16)−0.00240 (15)0.00014 (15)
Cl0.0238 (2)0.0120 (2)0.0163 (2)−0.00615 (16)0.00094 (16)−0.00323 (15)
C110.0160 (8)0.0127 (8)0.0108 (7)−0.0056 (6)−0.0026 (6)0.0017 (6)
C120.0149 (8)0.0147 (8)0.0157 (8)−0.0044 (7)−0.0034 (6)0.0012 (6)
C130.0194 (9)0.0117 (8)0.0172 (8)−0.0027 (7)−0.0046 (7)0.0009 (6)
C140.0232 (9)0.0140 (8)0.0196 (9)−0.0072 (7)−0.0086 (7)0.0018 (7)
C150.0156 (9)0.0180 (9)0.0278 (10)−0.0054 (7)−0.0070 (7)−0.0003 (7)
C160.0155 (8)0.0136 (8)0.0186 (9)−0.0020 (7)−0.0046 (7)−0.0010 (7)
C210.0119 (8)0.0110 (8)0.0148 (8)−0.0034 (6)−0.0029 (6)0.0002 (6)
C220.0189 (9)0.0165 (9)0.0132 (8)−0.0034 (7)−0.0042 (7)−0.0008 (6)
C230.0173 (9)0.0148 (8)0.0172 (8)−0.0023 (7)−0.0073 (7)0.0017 (7)
C240.0126 (8)0.0145 (8)0.0208 (9)−0.0033 (6)−0.0028 (7)−0.0022 (7)
C250.0173 (9)0.0212 (9)0.0147 (8)−0.0021 (7)−0.0025 (7)−0.0039 (7)
C260.0153 (8)0.0161 (8)0.0141 (8)−0.0023 (7)−0.0045 (6)−0.0003 (6)
C310.0134 (8)0.0138 (8)0.0115 (8)−0.0016 (6)−0.0033 (6)−0.0005 (6)
C320.0196 (9)0.0223 (9)0.0173 (9)−0.0108 (7)−0.0056 (7)0.0043 (7)
C330.0233 (10)0.0206 (9)0.0174 (9)−0.0104 (8)−0.0067 (7)0.0049 (7)
C340.0180 (9)0.0192 (9)0.0147 (8)−0.0041 (7)−0.0055 (7)−0.0014 (7)
C350.0172 (9)0.0210 (9)0.0185 (9)−0.0088 (7)−0.0054 (7)0.0012 (7)
C360.0166 (8)0.0170 (9)0.0150 (8)−0.0052 (7)−0.0032 (7)0.0024 (7)
C10.0310 (11)0.0126 (9)0.0482 (14)−0.0063 (8)−0.0169 (10)0.0006 (9)
O10.0244 (7)0.0132 (7)0.0448 (9)−0.0067 (6)−0.0144 (7)−0.0006 (6)
C20.0239 (10)0.0197 (10)0.0302 (11)0.0043 (8)−0.0088 (8)−0.0007 (8)
O20.0191 (7)0.0194 (7)0.0228 (7)0.0045 (5)−0.0052 (5)−0.0033 (5)
C30.0359 (12)0.0337 (12)0.0201 (10)−0.0178 (10)−0.0149 (9)0.0094 (8)
O30.0266 (7)0.0310 (8)0.0178 (7)−0.0141 (6)−0.0122 (6)0.0064 (6)

Geometric parameters (Å, °)

Pd—Cl2.2981 (4)C33—H330.95
Pd—Cli2.2981 (4)C34—O31.356 (2)
Pd—Pi2.3409 (4)C34—C351.393 (3)
Pd—P2.3409 (4)C35—C361.382 (3)
P—C211.8112 (17)C35—H350.95
P—C311.8124 (18)C36—H360.95
P—C111.8185 (18)C1—O11.435 (2)
C11—C121.397 (2)C1—H1A0.98
C11—C161.400 (2)C1—H1B0.98
C12—C131.391 (2)C1—H1C0.98
C12—H120.95C2—O21.431 (2)
C13—C141.399 (3)C2—H2A0.98
C13—H130.95C2—H2B0.98
C14—O11.360 (2)C2—H2C0.98
C14—C151.394 (3)C3—O31.435 (2)
C15—C161.384 (3)C3—H3A0.98
C15—H150.95C3—H3B0.98
C16—H160.95C3—H3C0.98
C21—C221.394 (2)C01—C021.434 (10)
C21—C261.396 (2)C01—H01A0.98
C22—C231.389 (3)C01—H01B0.98
C22—H220.95C01—H01C0.98
C23—C241.394 (3)C02—C031.296 (10)
C23—H230.95C02—C071.353 (10)
C24—O21.367 (2)C03—C041.410 (10)
C24—C251.391 (3)C03—H030.95
C25—C261.389 (2)C04—C051.372 (12)
C25—H250.95C04—H040.95
C26—H260.95C05—C061.265 (11)
C31—C321.394 (2)C05—H050.95
C31—C361.400 (3)C06—C071.462 (9)
C32—C331.391 (3)C06—H060.95
C32—H320.95C07—H070.95
C33—C341.393 (3)
Cl—Pd—Cli180C34—C33—H33120.3
Cl—Pd—Pi91.578 (15)O3—C34—C35115.85 (17)
Cli—Pd—Pi88.422 (15)O3—C34—C33124.53 (17)
Cl—Pd—P88.422 (15)C35—C34—C33119.62 (17)
Cli—Pd—P91.578 (15)C36—C35—C34120.49 (17)
Pi—Pd—P180.00 (2)C36—C35—H35119.8
C21—P—C31106.76 (8)C34—C35—H35119.8
C21—P—C11103.93 (8)C35—C36—C31120.74 (17)
C31—P—C11105.02 (8)C35—C36—H36119.6
C21—P—Pd110.78 (6)C31—C36—H36119.6
C31—P—Pd110.54 (6)O1—C1—H1A109.5
C11—P—Pd118.96 (6)O1—C1—H1B109.5
C12—C11—C16118.07 (16)H1A—C1—H1B109.5
C12—C11—P120.39 (14)O1—C1—H1C109.5
C16—C11—P121.53 (13)H1A—C1—H1C109.5
C13—C12—C11121.28 (17)H1B—C1—H1C109.5
C13—C12—H12119.4C14—O1—C1117.21 (16)
C11—C12—H12119.4O2—C2—H2A109.5
C12—C13—C14119.65 (17)O2—C2—H2B109.5
C12—C13—H13120.2H2A—C2—H2B109.5
C14—C13—H13120.2O2—C2—H2C109.5
O1—C14—C15115.85 (17)H2A—C2—H2C109.5
O1—C14—C13124.46 (17)H2B—C2—H2C109.5
C15—C14—C13119.68 (17)C24—O2—C2117.50 (15)
C16—C15—C14120.00 (18)O3—C3—H3A109.5
C16—C15—H15120O3—C3—H3B109.5
C14—C15—H15120H3A—C3—H3B109.5
C15—C16—C11121.33 (17)O3—C3—H3C109.5
C15—C16—H16119.3H3A—C3—H3C109.5
C11—C16—H16119.3H3B—C3—H3C109.5
C22—C21—C26118.89 (16)C34—O3—C3117.05 (15)
C22—C21—P118.30 (13)C02—C01—H01A109.5
C26—C21—P122.75 (14)C02—C01—H01B109.5
C23—C22—C21121.52 (17)H01A—C01—H01B109.5
C23—C22—H22119.2C02—C01—H01C109.5
C21—C22—H22119.2H01A—C01—H01C109.5
C22—C23—C24118.83 (17)H01B—C01—H01C109.5
C22—C23—H23120.6C03—C02—C07130.7 (7)
C24—C23—H23120.6C03—C02—C01119.1 (7)
O2—C24—C25115.53 (16)C07—C02—C01110.2 (7)
O2—C24—C23124.16 (17)C02—C03—C04119.2 (7)
C25—C24—C23120.30 (17)C02—C03—H03120.4
C26—C25—C24120.24 (17)C04—C03—H03120.4
C26—C25—H25119.9C05—C04—C03108.9 (8)
C24—C25—H25119.9C05—C04—H04125.5
C25—C26—C21120.14 (17)C03—C04—H04125.5
C25—C26—H26119.9C06—C05—C04133.6 (10)
C21—C26—H26119.9C06—C05—H05113.2
C32—C31—C36118.22 (16)C04—C05—H05113.2
C32—C31—P121.90 (14)C05—C06—C07116.0 (8)
C36—C31—P119.82 (13)C05—C06—H06122
C33—C32—C31121.47 (17)C07—C06—H06122
C33—C32—H32119.3C02—C07—C06110.4 (7)
C31—C32—H32119.3C02—C07—H07124.8
C32—C33—C34119.46 (17)C06—C07—H07124.8
C32—C33—H33120.3
Cl—Pd—P—C2140.71 (6)C23—C24—C25—C261.6 (3)
Cli—Pd—P—C21−139.29 (6)C24—C25—C26—C210.9 (3)
Cl—Pd—P—C31−77.43 (6)C22—C21—C26—C25−1.9 (3)
Cli—Pd—P—C31102.57 (6)P—C21—C26—C25175.13 (14)
Cl—Pd—P—C11160.99 (7)C21—P—C31—C3281.11 (16)
Cli—Pd—P—C11−19.01 (7)C11—P—C31—C32−28.83 (17)
C21—P—C11—C12−170.72 (14)Pd—P—C31—C32−158.32 (14)
C31—P—C11—C12−58.74 (16)C21—P—C31—C36−96.04 (15)
Pd—P—C11—C1265.57 (16)C11—P—C31—C36154.02 (14)
C21—P—C11—C1610.31 (17)Pd—P—C31—C3624.53 (16)
C31—P—C11—C16122.28 (15)C36—C31—C32—C33−0.7 (3)
Pd—P—C11—C16−113.40 (14)P—C31—C32—C33−177.86 (15)
C16—C11—C12—C13−0.2 (3)C31—C32—C33—C340.4 (3)
P—C11—C12—C13−179.23 (14)C32—C33—C34—O3−179.07 (18)
C11—C12—C13—C14−0.1 (3)C32—C33—C34—C350.4 (3)
C12—C13—C14—O1−178.36 (18)O3—C34—C35—C36178.74 (17)
C12—C13—C14—C150.6 (3)C33—C34—C35—C36−0.7 (3)
O1—C14—C15—C16178.38 (18)C34—C35—C36—C310.4 (3)
C13—C14—C15—C16−0.6 (3)C32—C31—C36—C350.3 (3)
C14—C15—C16—C110.3 (3)P—C31—C36—C35177.54 (14)
C12—C11—C16—C150.1 (3)C15—C14—O1—C1−175.70 (19)
P—C11—C16—C15179.15 (15)C13—C14—O1—C13.3 (3)
C31—P—C21—C22166.77 (14)C25—C24—O2—C2172.50 (17)
C11—P—C21—C22−82.53 (15)C23—C24—O2—C2−6.5 (3)
Pd—P—C21—C2246.36 (15)C35—C34—O3—C3176.95 (18)
C31—P—C21—C26−10.31 (17)C33—C34—O3—C3−3.6 (3)
C11—P—C21—C26100.39 (16)C07—C02—C03—C047.9 (11)
Pd—P—C21—C26−130.73 (14)C01—C02—C03—C04−174.1 (6)
C26—C21—C22—C230.4 (3)C02—C03—C04—C050.4 (9)
P—C21—C22—C23−176.82 (14)C03—C04—C05—C06−9.8 (14)
C21—C22—C23—C242.2 (3)C04—C05—C06—C0710.3 (14)
C22—C23—C24—O2175.75 (17)C03—C02—C07—C06−7.4 (10)
C22—C23—C24—C25−3.2 (3)C01—C02—C07—C06174.4 (5)
O2—C24—C25—C26−177.36 (17)C05—C06—C07—C02−1.1 (9)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C01—H01B···O2ii0.982.363.327 (7)170
C3—H3A···O2iii0.982.573.255 (3)127
C36—H36···Cl0.952.793.5402 (19)136

Symmetry codes: (ii) x+1, y−1, z; (iii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2723).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Drew, D. & Doyle, J. R. (1990). Inorg. Synth.28, 346–349.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Meijboom, R. & Omondi, B. (2010). Acta Cryst. B66 Submitted.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. New Jersey: Prentice Hall.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography